首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.  相似文献   

2.
Liu YE  Pu W  Wang J  Kang JX  Shi YE 《The FEBS journal》2007,274(13):3351-3362
The protective effect of early pregnancy against breast cancer can be attributed to the transition from undifferentiated cells in the nulliparous to the differentiated mature cells during pregnancy. Considerable evidence suggests strongly that the n-3 polyunsaturated fatty acid (PUFA) content of adipose breast tissue is inversely associated with an increased risk of breast cancer. Here, we report that there was a decrease in the n-6/n-3 PUFA ratio and a significant increase in concentration of n-3 PUFA docosapentaenoic acid and eicosapentaenoic acid in the pregnant gland. The functional role of n-3 PUFAs on differentiation was supported by the studies in the fat-1 transgenic mouse, which converts endogenous n-6 to n-3 PUFAs. Alternation of the n-6/n-3 ratio in favor of n-3 PUFA, and particularly docosapentaenoic acid, in the mammary gland of fat-1 mouse resulted in development of lobulo-alveolar-like structure and milk protein beta-casein expression, mimicking the differentiated state of the pregnant gland. Docosapentaenoic acid and eicosapentaenoic acid activated the Jak2/Stat5 signaling pathway and induced a functional differentiation with production of beta-casein. Expression of brain type fatty acid binding protein brain type fatty acid binding protein in virgin transgenic mice also resulted in a reduced ratio of n-6/n-3 PUFA, a robust increase in docosapentaenoic acid accumulation, and mammary differentiation. These data indicate a role of mammary derived growth inhibitor related gene for preferential accumulation of n-3 docosapentaenoic acid and eicosapentaenoic acid in the differentiated gland during pregnancy. Thus, alternation of n-6/n-3 fatty acid compositional ratio in favor of n-3 PUFA, and particularly docosapentaenoic acid and eicosapentaenoic acid, is one of the underlying mechanisms of pregnancy-induced mammary differentiation.  相似文献   

3.
4.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

5.
6.
Previous studies have shown that n-3 polyunsaturated fatty acids (PUFAs) can exert an antiapoptotic effect on neurons. The present study was designed to investigate whether the Caenorhabditis elegans fat-1 gene encoding an n-3 fatty acid desaturase (an enzyme that converts n-6 PUFAs to corresponding n-3 PUFAs) can be expressed functionally in rat cortical neurons and whether its expression can change the ratio of n-6 : n-3 fatty acids in the cell membrane and exert an effect on neuronal apoptosis. Infection of primary rat cortical cultures with Ad-fat-1 resulted in high expression of the fat-1 gene. Lipid analysis indicated a decrease in the ratio of n-6 : n-3 PUFAs from 5.9 : 1 in control cells, to 1.45 : 1 in cells expressing the n-3 fatty acid desaturase. Accordingly, the levels of prostaglandin E2, an eicosanoid derived from n-6 PUFA, were significantly lower in cells infected with Ad-fat-1 when compared with control cells. Finally, there was a significant inhibition of growth factor withdrawal-induced apoptotic cell death in neurons expressing the fat-1 gene. These results demonstrate that expression of the fat-1 gene can inhibit apoptotic cell death in neurons and suggest that the change in the n-6 : n-3 fatty acid ratio may play a key role in this protective effect.  相似文献   

7.
In this study the n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid appear to be effective inducers of electrophile-responsive element (EpRE) regulated genes, whereas the n-6 PUFA arachidonic acid is not. These n-3 PUFAs need to be oxidized to induce EpRE-regulated gene expression, as the antioxidant vitamin E can partially inhibit the PUFA induced dose-dependent effect. Results were obtained using a reporter gene assay, real-time RT-PCR and enzyme activity assays. The induction of EpRE-regulated phase II genes by n-3 PUFAs may be a major pathway by which n-3 PUFAs, in contrast to n-6 PUFAs, are chemopreventive and anticarcinogenic.  相似文献   

8.
PY Kim  M Zhong  YS Kim  BM Sanborn  KG Allen 《PloS one》2012,7(7):e41708
Epidemiological studies and interventional clinical trials indicate that consumption of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) such as docosahexaenoic acid (DHA) lengthen gestational duration. Although the mechanisms are not well understood, prostaglandins (PG) of the 2-series are known to play a role in the initiation and progress of labor. In animal studies, modest DHA provision has been shown to reduce placental and uterine PGE(2) and PGF(2α), matrix metalloproteinase (MMP)-2 and MMP-9 expression, and placental collagenase activity. However, modulation of PG biosynthesis may not account for all the effects of LC n-3 PUFAs in labor. We investigated one potential PG-independent mechanism of LC PUFA action using cultured pregnant human myometrial smooth muscle cells. Our goal was to characterize the effect of LC PUFA treatment on oxytocin signaling, a potent uterotonic hormone involved in labor. The addition of 10 μM-100 μM DHA or arachidonic acid (AA) to the culture media for 48 h resulted in dose dependent enrichment of these fatty acids in membrane lipid. DHA and AA significantly inhibited phosphatidylinositol turnover and [Ca(2+)](i) mobilization with oxytocin stimulation compared to bovine serum albumin control and equimolar oleic acid. DHA and AA significantly reduced oxytocin receptor membrane concentration without altering binding affinity or rate of receptor internalization. These findings demonstrate a role for LC n-3 PUFAs in regulation of oxytocin signaling and provide new insight into additional mechanisms pertaining to reports of dietary fish and fish oil consumption prolonging gestation.  相似文献   

9.
N-3 polyunsaturated fatty acids (PUFAs) from fish oil exert their functional effects by targeting multiple mechanisms. One mechanism to emerge in the past decade is the ability of n-3 PUFA acyl chains to perturb the molecular organization of plasma membrane sphingolipid/cholesterol-enriched lipid raft domains. These domains are nanometer-scale assemblies that coalesce to compartmentalize select proteins for optimal function. Here we review recent evidence on how n-3 PUFAs modify lipid rafts from biophysical and biochemical experiments from several different model systems. A central theme emerges from these studies. N-3 PUFA acyl chains display tremendous conformational flexibility and a low affinity for cholesterol and saturated acyl chains. This unique flexibility of n-3 PUFA acyl chains impacts the organization of inner and outer leaflet lipid rafts by disrupting acyl chain packing and molecular order within rafts. Ultimately, the disruption in raft organization has consequences for protein clustering and thereby signaling. Overall, elucidating the complex mechanisms by which n-3 PUFA acyl chains reorganize membrane architecture will enhance the translation of these fatty acids into the clinic for treating several diseases.  相似文献   

10.
《Biochimie》2013,95(11):2177-2181
In septic shock patients, alterations of plasma phospholipid fatty acid profile have never been described. The purpose of this monocentric, non-interventional, observational prospective study was to describe this fatty acid profile in the early phase of septic shock in intensive care unit. Thirty-seven adult patients with septic shock were included after the first day of stay in intensive care unit, before any form of artificial nutritional support. Plasma phospholipid fatty acid composition was determined by gas chromatography. All biological data from patients with septic shock were compared with laboratory reference values. Patients presented hypocholesterolemia and hypertriglyceridemia. They had low concentrations of phospholipid fatty acids specifically n-6 and n-3 polyunsaturated fatty acids (PUFAs) with a high n-6/n-3 ratio. Plasma phospholipid PUFA concentrations were strongly correlated with cholesterolemia. PUFAs/SFAs (saturated fatty acids) and PUFAs/MUFAs (monounsaturated fatty acids) ratios were low because of low percentage of n-6 and n-3 PUFAs and high percentage of SFAs and MUFAs. Low levels of plasma long chain PUFAs (≥20 carbons) were significantly associated with mortality at 28th day. In conclusion, plasma phospholipid FA profile of septic patients is very characteristic, close to that of acute respiratory distress syndrome and mortality is associated with long chain PUFA decrease. This profile could be explained by numerous non-exclusive physio-pathological processes 1) an activation of hepatic de novo lipogenesis that could contribute to hepatic steatosis, 2) an elevated adipose tissue lipolysis, 3) an increased free radical attack of FA by oxidative stress, 4) an over-production of inflammatory lipid mediators.  相似文献   

11.
Zhu G  Chen H  Wu X  Zhou Y  Lu J  Chen H  Deng J 《Transgenic research》2008,17(4):717-725
The functions of polyunsaturated fatty acids (PUFAs) have been widely investigated. In mammals, levels of n-3 PUFAs are relatively low compared to those of n-6 PUFAs. Either a lack of n-3 PUFAs or an excess of n-6 PUFAs could potentially cause health problems in humans. Hence, methods to increase the amount of n-3 PUFAs in diet have been intensely sought. In this study, we demonstrated that the n-3 fatty acid desaturase gene (sFat-1) synthesized from revised and optimized codons based on roundworm Caenorhabditis briggsae genomic gene for enhanced expression in mammals was successfully expressed in Chinese hamster ovary (CHO) cells and significantly elevated cellular n-3 PUFA contents. We generated sFat-1 transgenic mice by introducing mammal expression vector DNAs containing the sFat-1 gene into regular mice through the method of microinjection. Fatty acid compositions were then altered and the levels of docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (DPA, 22:5n-3) were greatly increased in these transgenic mice. Various types of tissues in the transgenic mice produced many types of n-3 PUFAs, such as alpha-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), DPA, and DHA, for example, muscle tissues of the transgenic mice contained 12.2% DHA, 2.0% DPA, and 23.1% total n-3 PUFAs. These research results demonstrated that the synthesized sFat-1 gene with modified and optimized codons from C. briggsae possess functional activity and greater capability of producing n-3 PUFAs, especially DHA and DPA, in transgenic mice.  相似文献   

12.
13.
Despite established anti-atherogenic action, previous reports have shown that fish oils or n-3 poly-unsaturated fatty acid (PUFA) increase plasma LDL-C in animals and humans. However, which component of n-3 PUFAs and what mechanisms contribute to this increase are unclear. We investigated the effects of the major components of n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on plasma LDL-C in high fat diet-fed hamsters. While LDL-C increased significantly with n-3 PUFA oil and DHA, EPA had no effect on LDL-C. Interestingly, a positive correlation was found between plasma cholesterol ester transfer protein (CETP) activity and LDL-C. Only DHA increased plasma CETP activity and significantly decreased LDL receptor expression in the liver. Our data suggest that DHA, not EPA, is a major factor in the LDL-C increasing effect of n-3 PUFA oil. These differential effects on LDL-C may arise from differences in plasma CETP activity and LDL receptor expression.  相似文献   

14.
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.  相似文献   

15.
16.
Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.  相似文献   

17.
18.
For many years, clinical and animal studies on polyunsaturated n-3 fatty acids (PUFAs), especially those from marine oil, eicosapentaenoic acid (20:5,n-3) and docosahexaenoic acid (22:6,n-3), have reported the impact of their beneficial effects on both health and diseases. Among other things, they regulate lipid levels, cardiovascular and immune functions as well as insulin action. Polyunsaturated fatty acids are vital components of the phospholipids of membrane cells and serve as important mediators of the nuclear events governing the specific gene expression involved in lipid and glucose metabolism and adipogenesis. Besides, dietary n-3 PUFAs seem to play an important protecting role against the adverse symptoms of the Plurimetabolic syndrome. This review highlights some recent advances in the understanding of metabolic and molecular mechanisms concerning the effect of dietary PUFAs (fish oil) and focuses on the prevention and/or improvement of dyslipidemia, insulin resistance, impaired glucose homeostasis, diabetes and obesity in experimental animal models, with some extension to humans.  相似文献   

19.
n-3多不饱和脂肪酸是机体脂肪酸成分之一,维持体内合理的n-3多不饱和脂肪酸比例具有重要的生理意义。但n-3多不饱和脂肪酸在大多数动物体内不能合成,只能从食物中补充。fat-1基因的出现改变了这一现状,它可以将多不饱和脂肪酸从n-6形式转化为n-3形式。文章综述了n-3多不饱和脂肪酸的功能,并介绍了fat-1基因的功能及转fat-1基因动物在n-3多不饱和脂肪酸功能研究上的应用。  相似文献   

20.
Polyunsaturated fatty acids (PUFAs) play an important role in both induction and prevention of carcinogenic process. It is well known that several types of neoplastic cells show decreased total PUFA content, contributing to their resistance to chemotherapy and lipid peroxidation. In the light of this, human lung cancer A549 cells, with low PUFA content, were exposed to arachidonic or docosahexaenoic acid to investigate the effect of n-6 and n-3 PUFAs on growth and elucidate underlying mechanisms. The bulk of the results showed that both n-6 PUFAs and n-3 PUFAs decrease human lung-tumor cell growth in a concentration-dependent manner, inducing cell death mainly evident at 100microM concentration. The mechanism underlying the antiproliferative effect of n-6 and n-3 PUFAs appeared to be the same, involving changes in fatty acid composition of biomembranes, production of cytostatic aldehydes derived from lipid peroxidation and able to affect DNA-binding activity of AP-1, and induction of PPAR. From these results it may be hypothesized that n-6 PUFAs, like n-3 PUFAs, are able to inhibit tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号