首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary behavior has been identified as one of the most important modifiable determinants of cancer risk. Which personalized modifications are needed remains an area of considerable controversy. Part of this uncertainty may arise from interactions among dietary bioactive compounds and/or food combinations. These interactions may either enhance or negate the response to specific foods. Evidence suggests that the cancer-protective effects of an individual's diet may reflect the combined effects of various vitamins, minerals, and other bioactive components such as flavonoids, isothiocyanates, and/or allium compounds rather than from the effect of a single ingredient. A better understanding of physiologically important interactions is needed to determine the merit of combining foods for maximum efficacy for cancer prevention. Furthermore, the response is complicated, since multiple cellular processes associated with carcinogenesis can be modified simultaneously, including sites such as drug metabolism, DNA repair, cell proliferation, apoptosis, inflammation, differentiation, and angiogenesis. Current evidence suggests that bioactive food components can typically influence more than one process. It is essential to have a better understanding of how the response relates to exposures and credentialing which process is most involved in bringing about a change in tumor incidence and/or tumor behavior. Credentialing is being defined as a determination of which cellular process(es) and which bioactive food components are most important for bringing about a phenotypic change. Additional attention is needed to determine the critical intake of dietary components, their duration, and when they should be provided to optimize the desired physiological response. Further research is also needed on the molecular targets for bioactive components and whether genetic and epigenetic events dictate the direction and magnitude of the response.  相似文献   

2.
Evidence that the intestinal microbiota is intrinsically linked with overall health, including cancer risk, is emerging. Moreover, its composition is not fixed but can be influenced by several dietary components. Dietary modifiers, including the consumption of live bacteria (probiotics) and indigestible or limited digestible food constituents such as oligosaccharides (prebiotics) and polyphenols or both (synbiotics), are recognized modifiers of the numbers and types of microbes and have been reported to reduce colon cancer risk experimentally. Microorganisms also have the ability to generate bioactive compounds from food components. Examples include equol from isoflavones, enterodiol and enterolactone from lignans and urolithins from ellagic acid, which have also been demonstrated to retard experimentally induced cancers. The gastrointestinal microbiota can also influence both sides of the energy balance equation, namely, as a factor influencing energy utilization from the diet and as a factor that influences host genes that regulate energy expenditure and storage. Because of the link between obesity and cancer incidence and mortality, this complex complexion deserves greater attention. Overall, a dynamic interrelationship exists between the intestinal microbiota and colon cancer risk, which can be modified by dietary components and eating behaviors.  相似文献   

3.
Research over the last three decades has provided convincing evidence to support the premise that diets rich in fruits and vegetables may be protective against the risk of different types of cancers. Initial evidence for protective effect of fruits and vegetables against cancer risk came from population-based case-control studies, which prompted intense research aimed at (a) identification of bioactive component(s) responsible for the anticancer effects of fruits and vegetables, (b) elucidation of the mechanisms by which bioactive food components may prevent cancer, and (c) determination of their efficacy for prevention of cancer in animal models. The bioactive components responsible for cancer chemopreventive effects of various edible plants have now been identified. For instance, anticancer effect of Allium vegetables including garlic is attributed to organosulfur compounds (e.g., diallyl trisulfide). Interestingly, unlike cancer chemotherapy drugs, many bioactive food components selectively target cancer cells. Molecular basis for selectivity of anticancer bioactive food components towards cancer cells remains elusive, but these agents appear promiscuous and target multiple signal transduction pathways to inhibit cancer cell growth in vitro and in vivo. Despite convincing observational and experimental evidence, however, limited effort has been directed towards clinical investigations to determine efficacy of bioactive food components for prevention of human cancers. This article reviews current knowledge on cancer chemopreventive effects of a few highly promising dietary constituents, including garlic-derived organosulfides, berry compounds, and cruciferous vegetable-derived isothiocyanates, and serves to illustrate complexity of the signal transduction mechanisms in cancer chemoprevention by these promising bioactive food components.  相似文献   

4.
Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence.  相似文献   

5.

Background

Epidemiological studies in the recent years have investigated the relationship between dietary habits and disease risk demonstrating that diet has a direct effect on public health. Especially plant-based diets -fruits, vegetables and herbs- are known as a source of molecules with pharmacological properties for treatment of several malignancies. Unquestionably, for developing specific intervention strategies to reduce cancer risk there is a need for a more extensive and holistic examination of the dietary components for exploring the mechanisms of action and understanding the nutrient-nutrient interactions. Here, we used colon cancer as a proof-of-concept for understanding key regulatory sites of diet on the disease pathway.

Results

We started from a unique vantage point by having a database of 158 plants positively associated to colon cancer reduction and their molecular composition (~3,500 unique compounds). We generated a comprehensive picture of the interaction profile of these edible and non-edible plants with a predefined candidate colon cancer target space consisting of ~1,900 proteins. This knowledge allowed us to study systematically the key components in colon cancer that are targeted synergistically by phytochemicals and identify statistically significant and highly correlated protein networks that could be perturbed by dietary habits.

Conclusion

We propose here a framework for interrogating the critical targets in colon cancer processes and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. Our methodology for better delineating prevention of colon cancer by nutritional interventions relies heavily on the availability of information about the small molecule constituents of our diet and it can be expanded to any other disease class that previous evidence has linked to lifestyle.  相似文献   

6.
Colorectal cancer is one of the most common internal malignancies in Western society. The cause of this disease appears to be multifactorial and involves genetic as well as environmental aspects. The human colon is continuously exposed to a complex mixture of compounds, which is either of direct dietary origin or the result of digestive, microbial and excretory processes. In order to establish the mutagenic burden of the colorectal mucosa, analysis of specific compounds in feces is usually preferred. Alternatively, the mutagenic potency of fecal extracts has been determined, but the interpretation of these more integrative measurements is hampered by methodological shortcomings. In this review, we focus on exposure of the large bowel to five different classes of fecal mutagens that have previously been related to colorectal cancer risk. These include heterocyclic aromatic amines (HCA) and polycyclic aromatic hydrocarbons (PAH), two exogenous factors that are predominantly ingested as pyrolysis products present in food and (partially) excreted in the feces. Additionally, we discuss N-nitroso-compounds, fecapentaenes and bile acids, all fecal constituents (mainly) of endogenous origin. The mutagenic and carcinogenic potency of the above mentioned compounds as well as their presence in feces, proposed mode of action and potential role in the initiation and promotion of human colorectal cancer are discussed. The combined results from in vitro and in vivo research unequivocally demonstrate that these classes of compounds comprise potent mutagens that induce many different forms of genetic damage and that particularly bile acids and fecapentaenes may also affect the carcinogenic process by epigenetic mechanisms. Large inter-individual differences in levels of exposures have been reported, including those in a range where considerable genetic damage can be expected based on evidence from animal studies. Particularly, however, exposure profiles of PAH and N-nitroso compounds (NOC) have to be more accurately established to come to a risk evaluation. Moreover, lack of human studies and inconsistency between epidemiological data make it impossible to describe colorectal cancer risk as a result of specific exposures in quantitative terms, or even to indicate the relative importance of the mutagens discussed. Particularly, the polymorphisms of genes involved in the metabolism of heterocyclic amines are important determinants of carcinogenic risk. However, the present knowledge of gene-environment interactions with regard to colorectal cancer risk is rather limited. We expect that the introduction of DNA chip technology in colorectal cancer epidemiology will offer new opportunities to identify combinations of exposures and genetic polymorphisms that relate to increased cancer risk. This knowledge will enable us to improve epidemiological study design and statistical power in future research.  相似文献   

7.
It has been suggested that the supermarket of today will be the pharmacy of tomorrow. Such statements have been derived from recognition of our increasing ability to optimize nutrition, and maintain a state of good health through longer periods of life. The new field of nutrigenomics, which focuses on the interaction between bioactive dietary components and the genome, recognizes that current nutritional guidelines may be ideal for only a relatively small proportion of the population. There is good evidence that nutrition has significant influences on the expression of genes, and, likewise, genetic variation can have a significant effect on food intake, metabolic response to food, individual nutrient requirements, food safety, and the efficacy of disease-protective dietary factors. For example, a significant number of human studies in various areas are increasing the evidence for interactions between single nucleotide polymorphisms (SNPs) in various genes and the metabolic response to diet, including the risk of obesity. Many of the same genetic polymorphisms and dietary patterns that influence obesity or cardiovascular disease also affect cancer, since overweight individuals are at increased risk of cancer development. The control of food intake is profoundly affected by polymorphisms either in genes encoding taste receptors or in genes encoding a number of peripheral signaling peptides such as insulin, leptin, ghrelin, cholecystokinin, and corresponding receptors. Total dietary intake, and the satiety value of various foods, will profoundly influence the effects of these genes. Identifying key SNPs that are likely to influence the health of an individual provides an approach to understanding and, ultimately, to optimizing nutrition at the population or individual level. Traditional methods for identification of SNPs may involve consideration of individual variants, using methodologies such as restriction fragment length polymorphisms or quantitative real-time PCR assays. New developments allow identification of up to 500,000 SNPs in an individual, and with increasingly lowered pricings these developments may explode the population-level potential for dietary optimization based on nutrigenomic approaches.  相似文献   

8.
9.
Experimental replication is fundamental for practicing science. To reduce variability, it is essential to control sources of variation as much as possible. Diet is an important factor that can influence many processes and functional outcomes in studies performed with rodent models. This is especially true for, but not limited to, nutritional studies. To compare functional effects of different nutrients, it is important to use standardized, semi-purified diets. Here, we propose and describe a standard reference diet, the BIOCLAIMS standard diet. The diet is AIN-93 based, but further defined with dietary and experimental requirements taken into account that allow for experiments with bioactive food components and natural (non-expensive) labeling. This diet will be implemented by two European research consortia, Mitofood and BIOCLAIMS, to ensure inter-laboratory comparability.  相似文献   

10.
Human epidemiological evidence and previous studies on mice have shown that Western-style diet (WD) may predispose gut mucosa to colorectal cancer (CRC). The mechanisms that mediate the effects of diet on tumorigenesis are largely unknown. To address putative cancer-predisposing events available for early detection, we quantitatively analyzed the proteome of histologically normal colon of a wild-type (Mlh1+/+) and an Mlh1+/− mouse after a long-term feeding experiment with WD and AIN-93G control diet. The Mlh1+/− mouse carries susceptibility to colon cancer analogous to a human CRC syndrome (Lynch syndrome). Remarkably, WD induced expression changes reflecting metabolic disturbances especially in the cancer-predisposed colon, while similar changes were not significant in the wild-type proteome. Overall, the detected changes constitute a complex interaction network of proteins involved in ATP synthesis coupled proton transport, oxidoreduction coenzyme and nicotinamide nucleotide metabolic processes, important in cell protection against reactive oxygen species toxicity. Of these proteins, selenium binding protein 1 and galectin-4, which directly interact with MutL homolog 1, are underlined in neoplastic processes, suggesting that sensitivity to WD is increased by an Mlh1 mutation. The significance of WD on CRC risk is highlighted by the fact that five out of six mice with neoplasias were fed with WD.  相似文献   

11.
We aimed to assess the relationship between dietary soyfood and isoflavone intake and colorectal cancer risk in a case-control study. A total of 901 colorectal cancer cases and 2669 controls were recruited at the National Cancer Center, Korea. A semi-quantitative food frequency questionnaire was used to assess the usual dietary habits, and the isoflavone intake level was estimated from five soyfood items. A high intake of total soy products, legumes, and sprouts was associated with a reduced risk for colorectal cancer in men and women, although the middle quartiles of intake of total soy products were associated with an elevated risk. In contrast, a high intake of fermented soy paste was associated with an elevated risk for colorectal cancer in men. The groups with the highest intake quartiles of isoflavones showed a decreased risk for colorectal cancer compared to their counterparts with the lowest intake quartiles in men (odds ratio (OR): 0.67, 95% confidence interval (CI): 0.51–0.89) and women (OR: 0.65, 95% CI: 0.43–0.99). The reduced risk for the highest intake groups persisted for distal colon cancer in men and rectal cancer in women. The association between soyfood intake and colorectal cancer risk was more prominent among post-menopausal women than pre-menopausal women. In conclusion, a high intake of total soy products or dietary isoflavones was associated with a reduced risk for overall colorectal cancer, and the association may be more relevant to distal colon or rectal cancers.  相似文献   

12.
Sea cucumber is a health-beneficial food, and contains a variety of physiologically active substances including glycosphingolipids. We show here the sphingoid base composition of cerebrosides prepared from sea cucumber and the cytotoxicity against human colon cancer cell lines. The composition of sphingoid bases prepared from sea cucumber was different from that of mammals, and the major constituents estimated from mass spectra had a branched C17-19 alkyl chain with 1-3 double bonds. The viability of DLD-1, WiDr and Caco-2 cells treated with sea cucumber sphingoid bases was reduced in a dose-dependent manner and was similar to that of cells treated with sphingosine. The sphingoid bases induced such a morphological change as condensed chromatin fragments and increased the caspase-3 activity, indicating that the sphingoid bases reduced the cell viability by causing apoptosis in these cells. Sphingolipids of sea cucumber might therefore serve as bioactive dietary components to suppress colon cancer.  相似文献   

13.
Sea cucumber is a health-beneficial food, and contains a variety of physiologically active substances including glycosphingolipids. We show here the sphingoid base composition of cerebrosides prepared from sea cucumber and the cytotoxicity against human colon cancer cell lines. The composition of sphingoid bases prepared from sea cucumber was different from that of mammals, and the major constituents estimated from mass spectra had a branched C17–19 alkyl chain with 1–3 double bonds. The viability of DLD-1, WiDr and Caco-2 cells treated with sea cucumber sphingoid bases was reduced in a dose-dependent manner and was similar to that of cells treated with sphingosine. The sphingoid bases induced such a morphological change as condensed chromatin fragments and increased the caspase-3 activity, indicating that the sphingoid bases reduced the cell viability by causing apoptosis in these cells. Sphingolipids of sea cucumber might therefore serve as bioactive dietary components to suppress colon cancer.  相似文献   

14.
Background: Micronutrients may protect against colorectal cancer. Especially folate has been considered potentially preventive. However, studies on folate and colorectal cancer have found contradicting results; dietary folate seems preventive, whereas folic acid in supplements and fortification may increase the risk. Objective: To evaluate the association between intake of vitamins C, E, folate and beta-carotene and colorectal cancer risk, focusing on possibly different effects of dietary, supplemental and total intake, and on potential effect modification by lifestyle factors. Design: In a prospective cohort study of 56,332 participants aged 50–64 years, information on diet, supplements and lifestyle was collected through questionnaires. 465 Colon and 283 rectal cancer cases were identified during follow-up. Incidence rate ratios of colon and rectal cancers related to micronutrient intake were calculated using Cox proportional hazard analyses. Results: The present study found a protective effect of dietary but not supplemental folate on colon cancer. No association with any other micronutrient was found. Rectal cancer did not seem associated with any micronutrient. For both colon and rectal cancer, we found an interaction between dietary folate and alcohol intake, with a significant, preventive effect among those consuming above 10 g alcohol/day only. Conclusions: This study adds further weight to the evidence that dietary folate protects against colon cancer, and specifies that there is a source-specific effect, with no preventive effect of supplemental folic acid. Further studies should thus take source into account. Vitamins C, E and beta-carotene showed no relation with colorectal cancer.  相似文献   

15.

Background

Colorectal cancer is the third most common cancer worldwide. Diet has been hypothesized as involved in colorectal cancer etiology, but few studies on the influence of total dietary antioxidant intake on colorectal cancer risk have been performed.

Methods

We investigated the association between colorectal cancer risk and the total antioxidant capacity (TAC) of the diet, and also of intake of selected antioxidants, in 45,194 persons enrolled in 5 centers (Florence, Naples, Ragusa, Turin and Varese) of the European Prospective Investigation into Cancer and Nutrition (EPIC) Italy study. TAC was estimated by the Trolox equivalent antioxidant capacity (TEAC) assay. Hazard ratios (HRs) for developing colorectal cancer, and colon and rectal cancers separately, adjusted for confounders, were estimated for tertiles of TAC by Cox modeling, stratifying by center.

Results

Four hundred thirty-six colorectal cancers were diagnosed over a mean follow-up of 11.28 years. No significant association between dietary TAC and colorectal cancer incidence was found. However for the highest category of TAC compared to the lowest, risk of developing colon cancer was lower (HR: 0.63; 95% CI: 0.44–0.89, P trend: 0.008). By contrast, increasing TAC intake was associated with significantly increasing risks of rectal cancer (2nd tertile HR: 2.09; 95%CI: 1.19–3.66; 3rd tertile 2.48 95%CI: 1.32–4.66; P trend 0.007). Intakes of vitamin C, vitamin E, and ß-carotene were not significantly associated with colorectal cancer risk.

Conclusions

Further prospective studies are needed to confirm the contrasting effects of high total antioxidant intake on risk of colon and rectal cancers.  相似文献   

16.

Background

Methionine is one of the key components of one carbon metabolism. Experimental studies indicate that methionine may reduce inflammation-induced colon cancer. However, epidemiologic findings as to whether dietary methionine intake influences colorectal cancer incidence in humans are inconsistent.

Objective

To investigate the relationship between dietary methionine intake and risk of colorectal cancer by performing a meta-analysis of prospective studies.

Methods

Eligible studies were identified by searching PubMed and Embase and by reviewing the bibliographies of the retrieved publications. The summary risk estimates were computed using both a random- effects and a fixed-effects model.

Results

Eight eligible prospective cohort studies involving 431,029 participants and 6,331 colorectal cancer cases were identified. According to the random-effects model, the summary relative risks (RRs) for the highest compared with the lowest intake of methionine were 0.89 (95% confidence interval [CI] = 0.77-1.03) for colorectal cancer, 0.77 (95% CI = 0.64 - 0.92) for colon cancer, and 0.88 (95% CI = 0.55-1.42) for rectal cancer. In the stratified analysis, a significant inverse association between dietary methionine intake and risk of colorectal cancer was observed in studies with longer follow-up time (RR=0.81, 95% CI= 0.70- 0.95), in Western studies (RR= 0.83, 95% CI = 0.73 - 0.95) and in men (RR = 0.75, 95% CI= 0.57-0.99). We found no indication of publication bias.

Conclusion

This meta-analysis indicates that dietary methionine intake may be associated with decreased risk of colorectal cancer, especially colon cancer. More prospective studies with long follow-up time are needed to confirm these findings.  相似文献   

17.
The end products of polyunsaturated fatty acid (PUFA) peroxidation, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE), and isoprostanes (8-iso-PGF), are widely used as systemic lipid oxidation/oxidative stress biomarkers. However, some of these compounds have also a dietary origin. Thus, replacing dietary saturated fat by PUFAs would improve health but could also increase the formation of such compounds, especially in the case of a pro-oxidant/antioxidant imbalanced diet. Hence, the possible impact of dietary fatty acids and pro-oxidant compounds was studied in rats given diets allowing comparison of the effects of heme iron vs. ferric citrate and of ω-6- vs. ω-3-rich oil on the level of lipid peroxidation/oxidative stress biomarkers. Rats given a heme iron-rich diet without PUFA were used as controls. The results obtained have shown that MDA and the major urinary metabolite of HNE (the mercapturic acid of dihydroxynonane, DHN-MA) were highly dependent on the dietary factors tested, while 8-iso-PGF was modestly but significantly affected. Intestinal inflammation and tissue fatty acid composition were checked in parallel and could only explain the differences we observed to a limited extent. Thus, the differences in biomarkers were attributed to the formation of lipid oxidation compounds in food or during digestion, their intestinal absorption, and their excretion into urine. Moreover, fecal extracts from the rats fed the heme iron or fish oil diets were highly toxic for immortalized mouse colon cells. Such toxicity can eventually lead to promotion of colorectal carcinogenesis, supporting the epidemiological findings between red meat intake and colorectal cancer risk.Therefore, the analysis of these biomarkers of lipid peroxidation/oxidative stress in urine should be used with caution when dietary factors are not well controlled, while control of their possible dietary intake is needed also because of their pro-inflammatory, toxic, and even cocarcinogenic effects.  相似文献   

18.
19.
20.
Several dietary agents, such as micronutrient and non-nutrient components, the so-called bioactive food components, have been shown to display anticancer properties and influence genetic processes. The most common epigenetic change is DNA methylation. Hypomethylation of long interspersed elements (LINE-1) has been associated with an increased risk of several cancers, although conflicting findings have also been observed. The aim of the present study was to test the hypothesis that a low adherence to the Mediterranean diet (MD) and folate deficiency may cause LINE-1 hypomethylation in blood leukocytes of healthy women, and thus genomic instability. One hundred and seventy-seven non-pregnant women were enrolled. Mediterranean diet score (MDS) and folate intake were calculated using a food frequency questionnaire. LINE-1 methylation level was measured by pyrosequencing analysis in three CpG sites of LINE-1 promoter. According to MDS, only 9.6 % of subjects achieved a high adherence to MD. Taking into account the use of supplements, there was a high prevalence of folate deficiency (73.4 %). Women whose consumption of fruit was below the median value (i.e., <201 gr/day) were 3.7 times more likely to display LINE-1 hypomethylation than women whose consumption was above the median value (OR 3.7; 95 % CI 1.4–9.5). Similarly, women with folate deficiency were 3.6 times more likely to display LINE-1 hypomethylation than women with no folate deficiency (OR 3.6; 95 % CI 1.1–12.1). A dietary pattern characterized by low fruit consumption and folate deficiency is associated with LINE-1 hypomethylation and with cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号