首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much of the advancement in mouse models for cancer during the past 2 decades can be attributed to our increasing capacity to specifically modify the mouse germ line. The first generations of oncomice and tumor-suppressor gene knockouts are now being succeeded by regulatable or conditional mouse tumor models, which can be utilized more effectively to establish correlations between distinct genetic lesions and specific tumor characteristics and to design and improve therapeutic intervention strategies. In this review we try to give the reader a flavor of how the latest reagents can be utilized.  相似文献   

2.
Metastasis of cancer cells is the main cause of death in most breast cancer patients. Although markers for early diagnosis and drugs that limit the spread of cancer to other organs have been developed, it is difficult to prevent the relapse of breast cancer. Recent research has highlighted the importance of tumor environment in which communication between tumor cells and the body system occurs. Emerging data have suggested that animal models are a good system to investigate this communication. Therefore, studies with mouse models have been developed as a reasonable method for a systemic approach to understand breast cancer metastasis. In this review, we summarize mouse models of breast cancer and their applications to the study of human breast cancers, and discuss limitation of model system and advanced techniques to overcome it.  相似文献   

3.
4.
5.
Role of diet modification in cancer prevention   总被引:2,自引:0,他引:2  
Carcinogenesis encompasses a prolonged accumulation of injuries at several different biological levels and include both genetic and biochemical changes in the cells. At each of these levels, there are several possibilities of intervention in order to prevent, slow down or even halt the gradual march of healthy cells towards malignancy. Diet modification is one such possibility. A number of natural foodstuffs, especially fruits and vegetables contain substantial quantities of molecules that have chemopreventive potential against cancer development. Such compounds include vitamins, trace elements and a variety of other molecules with antioxidant properties. Carotenoids, flavanoid polyphenols, isoflavones, catechins, and several other components that found in cruciferous vegetables are molecules that are known to protect against the deleterious effect of reactive oxygen species. A number of epidemiological and experimental studies have shown that vitamin C and E, Beta-carotene and the essential trace element selenium can reduce the risk of cancer. Consistent observations during the last few decades that cancer risk is reduced by a diet rich in vegetables, fruits, legumes, grains and green tea have encouraged research to identify several plant components especially phytochemicals that protect against DNA damage. Many of these substances block specific carcinogen pathways. Dietary supplements are part of an overall health program, along with a high intake of fruits and vegetables that help to combat damage to cells, which in turn may initiate cancer development. This paper will review current knowledge concerning diet modification and cancer prevention with special reference to minerals and trace elements.  相似文献   

6.
7.
Transgenic mouse models for the prevention of breast cancer   总被引:3,自引:0,他引:3  
Shen Q  Brown PH 《Mutation research》2005,576(1-2):93-110
Breast cancer prevention research has made remarkable progress in the past decade. Much of this progress has come from clinical trials. However, in the future to test the many promising agents that are now available, pre-clinical models of breast cancer are needed. Such models are now available. Useful models include rat and mouse models, particularly, the genetically engineered mice (GEM). Many transgenic mouse models have been generated by manipulating growth factors and their receptors, cell cycle regulators, signal transduction pathways, cellular differentiation, oncogenes and tumor suppressor genes. The transgenes are induced to express in the mouse mammary glands under the control of various transgenic promoters, which have respective characteristics in expression pattern and other biological attributes. These models are providing invaluable insight on the molecular mechanisms of breast tumorigenesis. In this review, we discuss the relative relevance of the most commonly used transgenic mouse models for breast cancer prevention studies, and provide examples of how these transgenic models can be used to conduct cancer prevention research. Due to the multi-factor, multi-step nature of breast cancer, many factors should be incorporated into a valid prevention study. However, many barriers to progress must be overcome, including access to and availability of new cancer preventive drugs, and difficulties in conducting studies of combinations of preventive agents.  相似文献   

8.
9.
10.
Mark O’Driscoll 《DNA Repair》2009,8(11):1333-1337
ATM and ATR orchestrate overlapping DNA damage responses in reply to different forms of DNA strand discontinuities. But, knockout mouse models suggest that ATR is essential for viability in contrast to ATM. Recently, more sophisticated mouse models have been published including a conditional ATR-knockdown system and by modelling the human ATR-Seckel syndrome-causative mutation. Here, I will overview and contrast these models highlighting the advances both represent in our understanding of how defects in the ATR-dependent DNA damage response can impact on normal development, tissue homeostasis, ageing and cancer.  相似文献   

11.
Genes involved in psychiatric disorders are difficult to identify, and those that have been proposed so far remain ambiguous. As it is unrealistic to expect the development of, say, a ‘schizophrenic’ or ‘autistic’ mouse, mice are unlikely to have the same role in gene identification in psychiatry as circling mice did in the discovery of human deafness genes. However, many psychiatric disorders are associated with intermediate phenotypes that can be modeled and studied in mice, including physiological or anatomical brain changes and behavioral traits. Mouse models help to evaluate the effect of a human candidate gene mutation on an intermediate trait, and to identify new candidate genes. Once a gene or pathway has been identified, mice are also used to study the interplay of different genes in that system.  相似文献   

12.
Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation.  相似文献   

13.
Obesity is characterized by an excess storage of body fat and promotes the risk for complex disease traits such as diabetes mellitus and cardiovascular diseases. The obesity prevalence in Europe is rising and meanwhile ranges from 10 to 20% in men and 15–25% in women. Body fat accumulation occurs in states of positive energy balance and is favored by interactions among environmental, psychosocial and genetic factors. Energy balance is regulated by a complex neuronal network of anorexigenic and orexigenic neurons which integrates peripheral and central hormonal and neuronal signals relaying information on the metabolic status of organs and tissues in the body. A key component of this network is the central melanocortin pathway in the hypothalamus that elicits metabolic and behavioral adaptations for the maintenance of energy homeostasis. Genetic defects in this system cause obesity in mice and humans. In this review we emphasize mouse models with spontaneous natural mutations as well as targeted mutations that contributed to our understanding of the central melanocortin system function in the control of energy balance.  相似文献   

14.
15.
Mouse models of the laminopathies   总被引:3,自引:0,他引:3  
The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.  相似文献   

16.
Evidence that the intestinal microbiota is intrinsically linked with overall health, including cancer risk, is emerging. Moreover, its composition is not fixed but can be influenced by several dietary components. Dietary modifiers, including the consumption of live bacteria (probiotics) and indigestible or limited digestible food constituents such as oligosaccharides (prebiotics) and polyphenols or both (synbiotics), are recognized modifiers of the numbers and types of microbes and have been reported to reduce colon cancer risk experimentally. Microorganisms also have the ability to generate bioactive compounds from food components. Examples include equol from isoflavones, enterodiol and enterolactone from lignans and urolithins from ellagic acid, which have also been demonstrated to retard experimentally induced cancers. The gastrointestinal microbiota can also influence both sides of the energy balance equation, namely, as a factor influencing energy utilization from the diet and as a factor that influences host genes that regulate energy expenditure and storage. Because of the link between obesity and cancer incidence and mortality, this complex complexion deserves greater attention. Overall, a dynamic interrelationship exists between the intestinal microbiota and colon cancer risk, which can be modified by dietary components and eating behaviors.  相似文献   

17.
18.
19.
Numerous epidemiological studies have consistently demonstrated that individuals who eat more fruits and vegetables (which are rich in carotenoids) and who have higher serum β-carotene levels have a lower risk of cancer, especially lung cancer. However, two human intervention trials conducted in Finland and in the United States have reported contrasting results with high doses of β-carotene supplementation increasing the risk of lung cancer among smokers. The failure of these trials to demonstrate actual efficacy has resulted in the initiation of animal studies to reproduce the findings of these two studies and to elucidate the mechanisms responsible for the harmful or protective effects of carotenoids in lung carcinogenesis. Although these studies have been limited by a lack of animal models that appropriately represent human lung cancer induced by cigarette smoke, ferrets and A/J mice are currently the most widely used models for these types of studies. There are several proposed mechanisms for the protective effects of carotenoids on cigarette smoke-induced lung carcinogenesis, and these include antioxidant/prooxidant effects, modulation of retinoic acid signaling pathway and metabolism, induction of cytochrome P450, and molecular signaling involved in cell proliferation and/or apoptosis. The technical challenges associated with animal models include strain-specific and diet-specific effects, differences in the absorption and distribution of carotenoids, and differences in the interactions of carotenoids with other antioxidants. Despite the problems associated with extrapolating from animal models to humans, the understanding and development of various animal models may provide useful information regarding the protective effects of carotenoids against lung carcinogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号