首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The laurel-forest of the Canary Islands is a montane cloud-forest. In order to gain some knowledge on the processes that maintain tree species diversity, we conducted an analysis of three different laurel-forest plots of the Anaga massif (Tenerife), varying in canopy composition but growing under similar environmental conditions. For each plot we recorded basal area of the canopy trees (h<1.30 m), the density of suckers and seedlings (h>1.30 m), as well as seed-bank composition. The plots have similar regeneration composition, which appears to be independent of differences in canopy composition. Laurus azorica is the most common seedling species, whereas Prunus lusitanica is the most abundant species among suckers and basal shoots. Neither Erica arborea nor Myrica faya, the two main canopy trees in one of the plots, were found in any of the stands as seedlings or suckers, despite their existence as viable seeds in the seed-bank. The regeneration composition and the canopy composition in one of the plots is remarkable different, revealing differents dynamics processes in the three plots. The results suggest the existence of three well-defined ecological groups: pioneer (regeneration primarily by seedlings), non-pioneer (regeneration by seedlings and suckers) and remnant species (regeneration primarily by suckers).These three groups and the effect of small scale disturbances (natural and human-induced), could help to understand the maintenance of tree species richness.  相似文献   

2.
We used a highly replicated study to examine vegetation characteristics between patches of intervened forest, abandoned agroforestry systems with coffee and actively managed agroforestry systems with coffee in a tropical landscape. In all habitats, plant structural characteristics, individual abundance, species richness and composition were recorded for the three plant size classes: adult trees, saplings and seedlings. Furthermore, bird species richness and composition, and seeds dispersed by birds were recorded. Tree abundance was higher in forest habitats while saplings and seedlings were more abundant in abandoned coffee sites. Although species richness of adult trees was similar in the three habitats, species richness of saplings and seedlings was much higher in forest and abandoned coffee than in managed coffee sites. However, in spite of their relatively low species richness, managed coffee sites are an important refuge for tree species common to the almost disappeared mature forest in the area. Floristic similarity for adult trees was relatively low between land use types, but clearly higher for seedlings, indicating homogenizing processes at the landscape level. More than half of the saplings and seedling were not represented by adults in the canopy layer, suggesting the importance of seed dispersal by birds between habitats. Our results show that each of the studied ecosystems plays a unique and complementary role as seed source and as habitat for tree recovery and tree diversity.  相似文献   

3.
Abstract. Semi-arid woodlands are two-phase mosaics of canopy and inter-canopy patches. We hypothesized that both aboveground competition (within canopy patches), and below-ground competition (between canopy patches), would be important structuring processes in these communities. We investigated the spatial pattern of trees in a Pinus edulis-Juniperus monosperma woodland in New Mexico using Ripley's K-function. We found strong aggregation of trees at scales of 2 to 4 m, which indicates the scale of canopy patches. Canopy patches were composed of individuals of both species. Crown centers of both species were always less aggregated than stem centers at scales less than canopy patch size, indicating morphological plasticity of competing crowns. In the smallest size classes of both species, aggregation was most intense, and occurred over a larger range of scales; aggregation decreased with increasing size as is consistent with density-dependent mortality from intraspecific competition. Within canopy patches, younger trees were associated with older trees of the other species. At scales larger than canopy patches, younger trees showed repulsion from older conspecifics, indicating below-ground competition. Hence, intraspecific competition was stronger than interspecific competition, probably because the species differ in rooting depth. Woodland dynamics depend on the scale and composition of canopy patches, aggregated seed deposition and facilitation, above- and below-ground competition, and temporal changes in the spatial scale of interactions. This woodland is intermediate in a grassland-forest continuum (a gradient of increasing woody canopy cover) and hence we expected, and were able to detect, the effects of both above- and below-ground competition.  相似文献   

4.
It is well known that the recovery of abandoned tropical pastures to secondary rainforest benefits from the arrival of seeds from adjacent rainforest patches. Less is known, however, about how the structural attributes of adjacent rainforest (e.g. tree density, canopy cover and tree height) impact seed rain patterns into abandoned pastures. Between 2011 and 2013, we used seed traps and ground seed surveys to track the richness and abundance of rainforest seeds entering abandoned pastures in Australia's wet tropics. We also tested how seed rain diversity is related to the distance from forest, the proportion of forest cover in the landscape and several structural attributes of adjacent forest patches, specifically average tree height, canopy cover, tree species richness and density. Almost no seeds were captured in elevated pasture seed traps, even near forest remnants. Abundant forest seeds were found in ground surveys but only within 10 m of forest edges. In ground surveys, seeds from wind‐dispersed species were more abundant, but less species rich, than animal‐dispersed species. A survey of pasture seedling recruits suggested that some forest seeds must be dispersing more than 10 m into pasture at very low frequencies, but only a few species are establishing there. Recruits were predominantly animal‐dispersed not wind‐dispersed species. In addition to distance from forest and the proportion of forest within a 100‐ to 200‐m radius of sampling sites, the richness and density of adjacent forest trees were the most important factors for explaining the probability of seed occurrence in abandoned pastures. Results suggest that without some restoration assistance, the recovery of abandoned pastures into secondary rainforest in Australia's tropical rainforests will likely be limited, at least in part, by a very low rate of seed dispersal away from forest edges and by the diversity and density of trees in adjacent remnant forests.  相似文献   

5.
Remnant tree presence affects forest recovery after slash‐and‐burn agriculture. However, little is known about its effect on above‐ground carbon stocks, especially in Africa. We focused our study on Sierra Leone, part of the Upper Guinean forests, an important centre of endemism threatened by encroachment and forest degradation. We studied 99 (20‐m‐radius) plots aged 2–10 years with and without remnant trees and compared their above‐ground carbon stocks, vegetation structure (stem density, basal area) and tree diversity. Above‐ground carbon stocks, stem density, basal area, species richness and tree diversity increased significantly with fallow age. Remnant tree presence affected significantly tree diversity, species dominance and above‐ground carbon stocks, but not vegetation structure (stem density, basal area). Number of remnant trees and number of species of remnant trees were also important explanatory variables. Although other factors should be considered in future studies, such as the size and dispersal modes of remnant trees, our results highlight that more strategic inclusion of remnant trees is likely to favour carbon stock and forest recovery in old fallows. To our knowledge, this is the first study on early succession regrowing fallows in West Africa.  相似文献   

6.
Planting tree seedlings in small patches (islands) has been proposed as a method to facilitate forest recovery that is less expensive than planting large areas and better simulates the nucleation process of recovery. We planted seedlings of four tree species at 12 formerly agricultural sites in southern Costa Rica in two designs: plantation (entire 50 × 50 m area planted) and island (six patches of three sizes). We monitored seedling survival, height, and canopy area over 3 years. To elucidate mechanisms influencing survival and growth, we measured soil and foliar nutrients, soil compaction, and photosynthesis. Survival of all species was similar in the two planting designs. Seedling height and canopy area were greater in plantations than islands at most sites, and more seedlings in islands decreased in height due to damage incurred during plot maintenance. Survival, height, and canopy area were both site‐ and species‐specific with the two N‐fixing species (Inga edulis and Erythrina poeppigiana) greater than the other species (Terminalia amazonia and Vochysia guatemalensis). Foliar N was higher in Terminalia and Vochysia in sites where Inga growth was greater. Soil nutrients, however, explained a small amount of the large differences in growth across sites. Leaf mass per area was higher in islands, and P use efficiency was higher in plantations. Our results show advantages (good seedling survival, cheaper) and disadvantages (more seedling damage, slightly lower growth) to the island planting design. Our study highlights the importance of replicating restoration strategies at several sites to make widespread management recommendations.  相似文献   

7.
The invasive exotic tree species Bitter Willow (Salix elaeagnos; Salicaceae) has colonised areas of rank exotic grassland and has been found to contain indigenous seed, dispersed by frugivorous birds into the monospecific stands. This small pilot study examined whether indigenous seedlings that have germinated in the understorey of exotic Bitter Willow stands could be stimulated to establish through the creation of small‐scale canopy gaps. In Bitter Willow forest, four single Bitter Willow trees were poisoned to create canopy gaps. Light transmission and seedling regeneration of tree and shrub species were assessed beneath both the four manipulated and three comparable intact Bitter Willow canopies. Over 3 years, seedling height and density increased more beneath opened compared to intact Bitter Willow canopies. These results suggest that Bitter Willow can fill the roles of both a facilitative nurse and a perch tree. Larger‐scale canopy manipulation experiments of both Bitter Willow and other Salix species are needed to determine the full potential of canopy manipulations for forest restoration.  相似文献   

8.
Factors limiting tree invasion in the Inland Pampas of Argentina were studied by monitoring the establishment of four alien tree species in remnant grassland and cultivated forest stands. We tested whether disturbances facilitated tree seedling recruitment and survival once seeds of invaders were made available by hand sowing. Seed addition to grassland failed to produce seedlings of two study species, Ligustrum lucidum and Ulmus pumila, but did result in abundant recruitment of Gleditsia triacanthos and Prosopis caldenia. While emergence was sparse in intact grassland, seedling densities were significantly increased by canopy and soil disturbances. Longer-term surveys showed that only Gleditsia became successfully established in disturbed grassland. These results support the hypothesis that interference from herbaceous vegetation may play a significant role in slowing down tree invasion, whereas disturbances create microsites that can be exploited by invasive woody plants. Seed sowing in a Ligustrum forest promoted the emergence of all four study species in understorey and treefall gap conditions. Litter removal had species-specific effects on emergence and early seedling growth, but had little impact on survivorship. Seedlings emerging under the closed forest canopy died within a few months. In the treefall gap, recruits of Gleditsia and Prosopis survived the first year, but did not survive in the longer term after natural gap closure. The forest community thus appeared less susceptible to colonization by alien trees than the grassland. We conclude that tree invasion in this system is strongly limited by the availability of recruitment microsites and biotic interactions, as well as by dispersal from existing propagule sources.  相似文献   

9.
In 1949 an area of undisturbed warm temperate rainforest (simple notophyll vine forest) in mid-north coastal New South Wales, Australia was studied in terms of both floristics and structure (Burges A. & Johnston R. D. J. Ecol. 41, 72-83, 1953). During 1955-56, the area in which the transect was located was logged. Over 90% of the upper closed canopy trees adjacent to the creek and on the lower slope and about 35% of canopy trees on the upper slope were removed. The area was reassessed in terms of floristics and structure in 1981. The greatest impact of logging in the study area was structural and largely confined to the flat adjacent to the creek and to the lower slope. With the exception of the remaining gaps covering 6% of the area, structural recovery time is estimated at 140-190 yr. In the gaps structural recovery may take up to 250 yr. All flowering plants, ferns and mosses previously recorded were present 25 yr after logging. The two alien plant species on the site are short lived intolerant species and gradually disappearing with canopy closure of the regenerating forest. The regeneration of the original tree species is healthy and vigorous with most regeneration resulting from the growth of advance regeneration present at the time of logging or the germination of new seedlings. Eleven per cent of the regeneration is attributable to coppicing. The importance of remnant canopy trees as a source of propagules for the trees and epiphytes is recognised. The larger openings are slower to recover as a result of lack of protection from frost. The stability of floristic composition of this area of warm temperate rainforest following heavy logging is demonstrated.  相似文献   

10.
飓风和台风对沿海地区森林生态系统的影响   总被引:4,自引:0,他引:4  
仝川  杨玉盛 《生态学报》2007,27(12):5337-5344
飓风和台风是影响热带和温带沿海区域的主要灾害性气候之一,飓风和台风对于森林生态系统的影响是生态学关注的课题。综述了飓风和台风登陆对于森林生态系统树木和林分的危害影响形式及主要影响因素,着重举例阐述了树种和森林类型是影响台风危害程度的一个重要因素。分析了目前国际上开展的关于飓风和台风登陆对于森林生态系统碳、氮循环的影响,结果表明飓风、台风干扰导致的森林凋落物输入量、凋落物分解速率以及森林碳储存量动态变化较为复杂,与森林类型、林分空间位置以及台风过后的时间段密切相关。飓风引起的森林受损的恢复途径和机理与树冠受损严重程度直接相关,并受到光和水分条件的影响,及时的开花、结果以及充足的土壤种子库对森林植被恢复具有促进作用。在景观和区域尺度量化飓风和台风对沿海地区森林生态系统的影响也日益引起关注,在这方面,整合气象数据、遥感数据和地面调查的模型模拟方法起到重要的作用。今后应加强对于我国东南沿海地区森林生态系统遭受台风影响损失的生态监测和长期定位研究,加强关于台风对于不同森林生态系统类型和不同树种的危害形式和危害程度的研究,以及台风对于森林生态系统碳、氮循环影响的研究,弥补我国在以上领域的空白。  相似文献   

11.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

12.
Forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates. One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes and which may act as seedling recruitment foci. Ficus trees, which are considered to be critically important components of tropical ecosystems, may be particularly attractive to seed dispersers in that they produce large and nutritionally rewarding fruit crops. Here, we evaluate the effectiveness of remnant Ficus trees in inducing forest recovery compared to other common trees. We studied the sapling communities growing under 207 scattered trees, and collected data on seed rain for 55 trees in a modified landscape in Assam, India. We found that Ficus trees have more sapling species around them (species richness = 140.1 ± 9.9) than non‐Ficus trees (79.5 ± 12.9), and significantly more saplings of shrub and large tree species. Sapling densities were twice as high under Ficus trees (median = 0.06/m2) compared to non‐Ficus (0.03/m2), and seed rain densities of non‐parent trees were significantly higher under Ficus trees (mean = 12.73 ± 3/m2/wk) than other fruit or non‐zoochorous trees (2.19 ± 0.97/m2/wk). However, our regression model found that canopy area, used as a proxy for tree size, was the primary predictor of sapling density, followed by remnant tree type. These results suggest that large trees, and in particular large Ficus trees, may be more effective forest restoration agents than other remnant trees in disturbed landscapes, and therefore the conservation of these trees should be prioritized.  相似文献   

13.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

14.
北京城区公园的植物种类构成及空间结构   总被引:8,自引:0,他引:8  
对植物种类构成及空间结构的研究,可为公园植物多样性保护及公园的科学管理提供重要依据.采用分层随机抽样调查法,调查了北京市五环以内的53处公园,共记录维管束植物96科283属492种.基于研究区乔、灌、草共21个调查项目的大量数据及相关统计分析,对北京城区公园绿地各层植物的常见结构型式进行了阐述.结果表明:北京城区公园植物中,本地种占5386%,植物属的区系地理分布很广泛,优势植物的优势性明显;研究区大部分公园的草本植物种类较为丰富、盖度较高,而灌木盖度偏低、树冠下的灌木也偏少,乔灌植物种类丰富度和密度不高,乔木冠幅、胸径、灌幅及乔灌高度基本在2级水平,但乔木冠层结构比较丰满、受光良好、生长状况良好,灌木叶层缺失不明显.通过相关分析和北京市园林绿化史调研结果推测,北京城区公园植物种类构成及其空间结构主要受园林设计、植物引种、种植管理的影响.  相似文献   

15.
The effect of canopy trees on understory seedling and sapling distribution is examined in near-climax hemlock-northern hardwood forests in order to predict tree replacement patterns and assess compositional stability. Canopy trees and saplings were mapped in 65 0.1-ha plots in 16 tracts of old-growth forests dominated by Tsuga canadensis, Acer saccharum, Fagus grandifolia, Tilia americana, and Betula lutea in the northeastern United States. Seedlings were tallied in sub-plots. Canopy influence on individual saplings and sub-plots was calculated, using several indices for canopy species individually and in total. For each species sapling and seedling distributions were compared to those distributions expected if saplings were located independently of canopy influence. Non-random distributions indicated that sapling and seedling establishment or mortality were related to the species of nearby canopy trees. Hemlock canopy trees discriminate against beech and maple saplings while sugar maple canopy favors beech saplings relative to other species. Basswood canopy discourages growth of saplings of other species, but produces basal sprouts. Yellow birch saplings were rarely seen beneath intact canopy. Since trees in these forests are usually replaced by suppressed seedlings or saplings, canopy-understory interactions should influence replacement probabilities and, ultimately, stand composition. I suggest that hemlock and basswood tend to be self-replacing, maple and beech tend to replace each other, and birch survives as a fugitive by occupying occasional suitable gaps. This suggests that these species may co-exist within stands for long periods with little likelihood of successional elimination of any species. There is some suggestion of geographical variation in these patterns.  相似文献   

16.
Efforts to restore tropical forest in abandoned pasture are likely to be more successful when bird visitation is promoted because birds disperse seeds and eat herbivorous arthropods that damage leaves. Thus, it is critical to understand bird behavior in relation to different restoration strategies. We measured the likelihood of visitation, number of visits, and duration of visits for all birds and for Cherrie's Tanager ( Ramphocelus costaricensis ), a common seed disperser, in five sizes of forest restoration patches planted with four tree species in southern Costa Rica. We predicted that the largest patches, and the tree species with the greatest canopy cover, would be visited most frequently and have the longest visits because we assumed that these patch types had the greatest food resources and the lowest predation risk. We found that birds were more likely to visit large patches and the tree species with the highest canopy cover ( Inga edulis ). Birds visited Inga trees more often and stayed in Inga and Erythrina poeppigiana trees for longer periods of time than in other tree species. We found similar results for Cherrie's Tanagers. Thus, we identified two factors, tree species and patch size, which may be manipulated in restoration projects to increase bird visitation.  相似文献   

17.
The floristic composition and structure of a premontane moist forest remnant were studied in the El Rodeo Protected Zone, Central Valley of Costa Rica. Three one-hectare plots were established in the non-disturbed forest, and all trees with a diameter at breast height (dbh) of 10 cm or greater were marked, measured and identified. The plots were located within a radius of 500 m from each other. A total of 106 tree species were recorded in the three plots. Average values: species richness 69.6 species ha-1, abundance 509 individuals ha-1, basal area 36.35 m2 ha-1. Total diversity was 3.54 (Shannon Index, H'), and the species similarity among the plots ranged between S = 0.68 and 0.70 (S?rensen Similarity Index). Most tree species are represented by few individuals (five or less). There is a lack of emergent trees and arborescent palms in the forest canopy. According to the Familial Importance Value, Moraceae, followed by Fabaceae, Lauraceae, and Sapotaceae, largely dominates this forest. Pseudolmedia oxyphillaria (Moraceae) is the dominant species (Importance Value Index), accounting for 25% of all the marked trees in the plots, followed by Clarisia racemosa (Moraceae), Heisteria concinna (Olacaceae), and Brosimum alicastrum (Moraceae). The size class distributions were similar among plots, and in general followed the expected J-inverted shape. Differences in tree abundance, floristic composition, and spatial distribution of some species among the plots suggest heterogeneity of this ecosystem's arborescent vegetation. Moreover, it is an important natural reservoir for the conservation of rare and endangered tree species in a national level. Using these results as a baseline, this study should start a long term monitoring of the structure and composition of this very reduced and fragmented ecosystem.  相似文献   

18.
This study examined the role of shading and cloud combing of moisture by scattered trees of the emergent conifer Araucaria laubenfelsii (Corbass.) in montane shrubland‐maquis at Mont Do, New Caledonia, in facilitating the succession from shrubland to rain forest. Water collection experiments showed that these trees combed significant amounts of water from low clouds on days when no rainfall was recorded and deposited this moisture on the ground beneath the tree canopy. Analysis of photosystem II function in A. laubenfelsii and five other plant species using fluorometry revealed much lower photosystem stress in plants beneath scattered A. laubenfelsii than for individuals exposed to full sunlight in the open maquis. Transition matrix analyses of vegetation change based on “the most likely recruit to succeed” indicated that the transition from maquis to forest was markedly faster when emergent trees of A. laubenfelsii acted as nuclei for forest species invasion of die maquis. On the basis of these lines of evidence, it is argued that increased moisture and shading supplied to the area directly below the crown of isolated A. laubenfelsii trees in the maquis facilitates the establishment of both conifer seedlings and other rain forest tree and shrub species. In the absence of fire, rain forest can reestablish through spread in two ways: first, by expansion from remnant patches, and second, from coalescence of small rain forest patches formed around individual trees of A. laubenfelsii.  相似文献   

19.
Abstract. We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33 % or 66 % removal of tree basal area from 0.01-ha, 0.05-ha or 0.20-ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with loge tree density as the independent variable accounted for between 93 % and 98 % of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density.  相似文献   

20.
The capacity of seedlings to survive for extended periods beneath intact forest increases the likelihood of regeneration of many species of canopy trees in rainforests. I studied the demographics of Argyrodendron actinophyllum (F.M.Bail.) H.L.Edlin seedlings in a subtropical rainforest in northern New South Wales. A mast seeding of A. actinophyllum was observed and subsequent survival of seedlings monitored over a four year period. Densities of seedlings that emerged correlated with seedfall, while seedfall depended on the size and distance to the surrounding trees. Mortality of seedlings showed density-dependence at higher seedling densities (above about 100 seedlings m?2), apparently in response to browsing pressure that varied with the density of seedlings. Seedlings that were protected from vertebrates by exclosure cages had lower mortality rates than unprotected seedlings and showed no density response. Glasshouse experiments showed seedling growth was reduced by defoliation, light intensity and initial seed weight, and that seedlings could not persist at light intensities below about 1% ambient, which occur in darker patches on the forest floor. Possible mechanisms whereby the observed spatial and temporal patterns of seedling recruitment could reduce the likelihood of the species becoming more common relative to other tree species in the forest are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号