首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secreting β-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors than purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D development and evidence from animal models suggests that gut microbiota manipulation might prove valuable in future prevention of T1D in genetically susceptible individuals.  相似文献   

2.
3.
Molecular Biology Reports - Natural polysaccharides cellulose, hemicelluloses, inulin etc., galactooligosaccharides (GOS), and fructooligosaccharides (FOS) play a significant role in the...  相似文献   

4.
During recent years, the composition of the gut microbiota (GM) has received increasing attention as a factor in the development of experimental inflammatory disease in animal models. Because increased variation in the GM might lead to increased variation in disease parameters, determining and reducing GM variation between laboratory animals may provide more consistent models. Both genetic and environmental aspects influence the composition of the GM and may vary between laboratory animal breeding centers and within an individual breeding center. This study investigated the variation in cecal microbiota in 8-wk-old NMRI and C57BL/6 mice by using denaturing gradient gel electrophoresis to profile PCR-derived amplicons from bacterial 16S rRNA genes. Comparison of the cecal microbiotas revealed that the similarity index of the inbred C57BL/6Sca strain was 10% higher than that of the outbred Sca:NMRI stock. Comparing C57BL/6 mice from 2 vendors revealed significant differences in the microbial profile, whereas the profiles of C57BL/6Sca mice raised in separate rooms within the same breeding center were not significantly different. Furthermore, housing in individually ventilated cages did not lead to intercage variation. These results show that denaturing gradient gel electrophoresis is a simple tool that can be used to characterize the gut microbiota of mice. Including such characterizations in future quality-control programs may increase the reproducibility of mouse studies.  相似文献   

5.
The aim of the study was to assess the quantitative and qualitative differences of the gut microbiota in infants. We evaluated gut microbiota at the age of 6 months in 32 infants who were either exclusively breast-fed, formula-fed, nursed by a formula supplemented with prebiotics (a mixture of fructo- and galacto-oligosaccharides) or breast-fed by mothers who had been given probiotics. The Bifidobacterium, Bacteroides, Clostridium and Lactobacillus/Enterococcus microbiota were assessed by the fluorescence in situ hybridization, and Bifidobacterium species were further characterized by PCR. Total number of bifidobacteria was lower among the formula-fed group than in other groups (P=0.044). Total amounts of the other bacteria were comparable between the groups. The specific Bifidobacterium microbiota composition of the breast-fed infants was achieved in infants receiving prebiotic supplemented formula. This would suggest that early gut Bifidobacterium microbiota can be modified by special diets up to the age of 6 months.  相似文献   

6.
Lactobacilli are believed to be beneficial for the human hosts and are currently being evaluated as potentially probiotic bacteria. In this study, Lactobacillus strains were isolated from infant faeces and were examined in vitro for potential probiotic properties. Faecal specimens from 63 healthy, full-term infants were collected at 4, 30 and 90 days after delivery. Seventy-four Lactobacillus strains were isolated and one or more different phenotypes from each infant (n = 44) were selected for further testing. The bacterial isolates were identified mainly as L. gasseri, L. crispatus, Lactobacillus paracasei, L. salivarius, L. fermentum after amplification and sequencing of 16s rRNA gene. The strains were examined for acid and bile tolerance, adhesion to Caco-2 cells, antibiotic susceptibility and antimicrobial activity against selected enteric pathogens. The great majority of the isolated lactobacilli were susceptible to ampicillin, amoxicillin/clavulanic acid, tetracycline, erythromycin, cephalothin, chloramphenicol and rifampicin. Resistance to vancomycin or bacitracin was detected to 34% of the strains. Twenty strains out of forty-four exhibited significant tolerance to bile salts. Those strains were subsequently tested for resistance to low pH conditions (pH 2 and 3). Interestingly, 85% (17 strains) of the tested lactobacilli remained unaffected at pH 3 after 3 h of incubation, 6 strains were found resistant at pH 2 after 1.5 h and only 2 strains found resistant after 3 h of incubation. Two of the strains were able to adhere to Caco-2 cells. In conclusion, two isolates fulfilled the in vitro probiotic criteria and are good candidates for further in vivo evaluation.  相似文献   

7.
For several decades the intestinal microbiota was mainly studied by those investigating infections and diseases associated with gut health, usually from a microbiology point of view. In the past few years, however, it has become apparent that the intestinal microbiota has widespread implications in the field of immunology, and researchers are being compelled to explain how the microbiota contributes to and/or affects their studies.  相似文献   

8.
Celiac disease (CD) is an immune-mediated enteropathy involving genetic and environmental factors whose interaction might influence disease risk. The aim of this study was to determine the effects of milk-feeding practices and the HLA-DQ genotype on intestinal colonization of Bacteroides species in infants at risk of CD development. This study included 75 full-term newborns with at least one first-degree relative suffering from CD. Infants were classified according to milk-feeding practice (breast-feeding or formula feeding) and HLA-DQ genotype (high or low genetic risk). Stools were analyzed at 7 days, 1 month, and 4 months by PCR and denaturing gradient gel electrophoresis (DGGE). The Bacteroides species diversity index was higher in formula-fed infants than in breast-fed infants. Breast-fed infants showed a higher prevalence of Bacteroides uniformis at 1 and 4 months of age, while formula-fed infants had a higher prevalence of B. intestinalis at all sampling times, of B. caccae at 7 days and 4 months, and of B. plebeius at 4 months. Infants with high genetic risk showed a higher prevalence of B. vulgatus, while those with low genetic risk showed a higher prevalence of B. ovatus, B. plebeius, and B. uniformis. Among breast-fed infants, the prevalence of B. uniformis was higher in those with low genetic risk than in those with high genetic risk. Among formula-fed infants, the prevalence of B. ovatus and B. plebeius was increased in those with low genetic risk, while the prevalence of B. vulgatus was higher in those with high genetic risk. The results indicate that both the type of milk feeding and the HLA-DQ genotype influence the colonization process of Bacteroides species, and possibly the disease risk.  相似文献   

9.
10.
The initial establishment of lactic acid bacteria (LAB) and bifidobacteria in the newborn and the role of breast-milk as a source of these microorganisms are not yet well understood. The establishment of these microorganisms during the first 3 months of life in 20 vaginally delivered breast-fed full-term infants, and the presence of viable Bifidobacterium in the corresponding breast-milk samples was evaluated. In 1 day-old newborns Enterococcus and Streptococcus were the microorganisms most frequently isolated, from 10 days of age until 3 months bifidobacteria become the predominant group. In breast-milk, Streptococcus was the genus most frequently isolated and Lactobacillus and Bifidobacterium were also obtained. Breast-milk contains viable lactobacilli and bifidobacteria that might contribute to the initial establishment of the microbiota in the newborn.  相似文献   

11.
Gut microbiota contributes positively to the physiology of their host. Some feed additives have been suggested to improve livestock health and stimulate growth performance by modulating gut bacteria species. Here, we fed grass carp with 0 (control), 8% (Treat1), 10% (Treat2), 12% (Treat3) and 16% (Treat4) of yeast culture (YC) for 10 weeks. The gut microbiota was analysed by 16S rRNA gene V3‐4 region via an Illumina MiSeq platform. PCoA test showed that gut bacterial communities in the control and Treat3 formed distinctly separate clusters. Although all the groups shared a large size of OTUs as a core microbiota community, a strong distinction existed at genus level. Treat3 contained the highest proportion of the beneficial bacteria and obviously enhanced the capacity of amino acid, lipid metabolism and digestive system. In addition, Treat3 significantly improved the fish growth and increased the liver and serum T‐SOD activities while dramatically decreased the liver GPT and GOT. Collectively, these findings demonstrate the beneficial effects of YC feeding on gut microbiota, growth and biochemical parameters and Treat3 might be the optimal supplementation amount for grass carp, which opens up the possibility that a new feed additive can be developed for healthy aquaculture.  相似文献   

12.
肠道微生物与昆虫的共生关系   总被引:9,自引:2,他引:9  
昆虫肠道栖息着大量的微生物。随着近年来研究肠道微生物的方法不断进步,尤其是基于16S rDNA的分子生物学方法的应用,人们对肠道微生物的了解逐渐加深。昆虫肠道对于微生物的拓殖存在一定的选择作用。肠道微生物对昆虫寄主的作用包括提供营养、利用拓殖抗性抵抗外来微生物侵袭、参与多重营养关系、引起昆虫免疫反应。长期进化过程中肠道微生物与昆虫发展出紧密的共生关系,微生物发展出一系列手段适应昆虫肠道环境。文章从以上几个方面对近年来的研究进展进行总结,并对昆虫肠道微生态学的实践意义和将来可能的研究热点进行展望。  相似文献   

13.
14.
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.  相似文献   

15.
16.
17.
The human gut microbiota comprises approximately 100 trillion microbial cells and has a significant effect on many aspects of human physiology including metabolism, nutrient absorption and immune function. Disruption of this population has been implicated in many conditions and diseases, including examples such as obesity, inflammatory bowel disease and colorectal cancer that are highlighted in this review. A logical extension of these observations suggests that the manipulation of the gut microbiota can be employed to prevent or treat these conditions. Thus, here we highlight a variety of options, including the use of changes in diet (including the use of prebiotics), antimicrobial-based intervention, probiotics and faecal microbiota transplantation, and discuss their relative merits with respect to modulating the intestinal community in a beneficial way.  相似文献   

18.
Flavonoid metabolism: the interaction of metabolites and gut microbiota   总被引:1,自引:0,他引:1  
Abstract

Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.  相似文献   

19.
Diabetes mellitus (DM) increases the risk of cardiovascular diseases and other secondary complications, such as nephropathy, neuropathy, retinopathy, etc. The important risk factors for the pathogenesis of DM are aging, family history, sedentary lifestyle, unhealthy dietary habits, and obesity. Evidence from epidemiological studies also indicates that DM is characterized by specific alterations in the human gut microbiota (GM). GM transplantation in rodents and humans revealed that a specific GM constituent can be the cause and not just the consequence of the DM condition and complications. These findings suggest a potential role of GM in human health, disease prevention, and treatment. Dietary intervention studies using dietary fibers (DFs) suggested that modulation of the GM can suppress the metabolic risk markers in humans. However, a causal role of GM in such studies remains unexplored. Long-term follow-up studies disclosed that the diet rich in insoluble and non-viscous fibers are responsible for DF-mediated antidiabetic activities, while soluble and viscous fibers have little influence on DM despite having a profound impact on glycemia. However, general conclusions cannot be drawn simply based on these findings. Long-term follow-up studies are urgently required in this area to explore the therapeutic potential of different DFs in treating DM and to delineate the exact role of GM involvement. Here we review and discuss the signature of GM during DM, antidiabetic activity of metformin via GM modulation, DFs from different sources and their antidiabetic activity, and the possible role of GM involvement.  相似文献   

20.
Human gut microbiota and bifidobacteria: from composition to functionality   总被引:1,自引:0,他引:1  
The human gut is the home of an estimated 10(18) bacterial cells, many of which are uncharacterized or unculturable. Novel culture-independent approaches have revealed that the majority of the human gut microbiota consists of members of the phyla Bacteroidetes and Firmicutes. Nevertheless the role of bifidobacteria in gut ecology illustrates the importance of Actinomycetes and other Actinobacteria that may be underestimated. The human gut microbiota represents an extremely complex microbial community the collective genome of which, the microbiome, encodes functions that are believed to have a significant impact on human physiology. The microbiome is assumed to significantly enhance the metabolism of amino and glycan acids, the turnover of xenobiotics, methanogenesis and the biosynthesis of vitamins. Co-colonisation of the gut commensals Bifidobacterium longum and Bacteroides thetaiotaomicron in a murine model system revealed that the presence of bifidobacteria induced an expansion in the diversity of polysaccharides targeted for degradation by Bacteroides and also induced host genes involved in innate immunity. In addition, comparative analysis of individual human gut microbiomes has revealed various strategies that the microbiota use to adapt to the intestinal environment while also pointing to the existence of a distinct infant and adult-type microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号