首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The obligate intracellular apicomplexan parasites, e.g. Toxoplasma gondii and Plasmodium species, induce an IFNγ-driven induction of host indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of tryptophan catabolism in the kynurenine pathway. Induction of IDO1 supposedly depletes cellular levels of tryptophan in host cells, which is proposed to inhibit the in vitro growth of auxotrophic pathogens. In vivo function of IDO during infections, however, is not clear, let alone controversial. We show that Eimeria falciformis, an apicomplexan parasite infecting the mouse caecum, induces IDO1 in the epithelial cells of the organ, and the enzyme expression coincides with the parasite development. The absence or inhibition of IDO1/2 and of two downstream enzymes in infected animals is detrimental to the Eimeria growth. The reduced parasite yield is not due to a lack of an immunosuppressive effect of IDO1 in the parasitized IDO1(-/-) or inhibitor-treated mice because they did not show an accentuated Th1 and IFNγ response. Noticeably, the parasite development is entirely rescued by xanthurenic acid, a by-product of tryptophan catabolism inducing exflagellation in male gametes of Plasmodium in the mosquito mid-gut. Our data demonstrate a conceptual subversion of the host defense (IFNγ, IDO) by an intracellular pathogen for progression of its natural life cycle. Besides, we show utility of E. falciformis, a monoxenous parasite of a well appreciated host, i.e. mouse, to identify in vivo factors underlying the parasite-host interactions.  相似文献   

2.
3.
4.
RNA silencing plays a major role in innate antiviral and antibacterial defenses in plants, insects, and animals through the action of microRNAs (miRNAs). miRNAs can act in favor of the microorganism, either when it is pathogen-encoded or when the microorganism subverts host miRNAs to its benefit. Recent data point to the possibility that apicomplexan parasites have developed tactics to interfere with host miRNA populations in a parasite-specific manner, thereby identifying the RNA-silencing pathway as a new means to reshape their cellular environment. This review highlights the current understanding and new insights concerning the mechanisms that could be involved and the potential roles of the host microRNome (miRNome) in apicomplexan infection.  相似文献   

5.
Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.  相似文献   

6.
Infestations by dipterous larvae that feed on dead or living vertebrate tissues for a variable period are known as myiases; these infestations reduce host physiological functions, destroy host tissues and cause significant economic losses to livestock worldwide. Recent advances in understanding the specific and nonspecific immune responses of hosts to infestation by myiasis-causing larvae and the immunological strategies evolved by larvae against the host are reviewed here. The practical implications of immunological knowledge for diagnostic and vaccination strategies are also discussed, with a view to developing environmentally sustainable control methods to be used as an alternative to chemical treatments.  相似文献   

7.
Apicomplexan parasites secrete transmembrane (TM) adhesive proteins as part of the process leading to host cell attachment and invasion. These microneme proteins are cleaved in their TM domains by an unidentified protease termed microneme protein protease 1 (MPP1). The cleavage site sequence (IA downward arrowGG), mapped in the Toxoplasma gondii microneme proteins TgMIC2 and TgMIC6, is conserved in microneme proteins of other apicomplexans including Plasmodium species. We report here the characterisation of novel T. gondii proteins belonging to the rhomboid family of intramembrane-cleaving serine proteases. T. gondii possesses six genes encoding rhomboid-like proteins. Four are localised along the secretory pathway and therefore constitute possible candidates for MPP1 activity. Toxoplasma rhomboids TgROM1, TgROM2 and TgROM5 cleave the TM domain of Drosophila Spitz, an established substrate for rhomboids from several species, demonstrating that they are active proteases. In addition, TgROM2 cleaves chimeric proteins that contain the TM domains of TgMIC2 and TgMIC12.  相似文献   

8.
The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility.  相似文献   

9.
Phages will out: strategies of host cell lysis   总被引:24,自引:0,他引:24  
Most phages accomplish host lysis using a muralytic enzyme, or endolysin, and a holin, which permeabilizes the membrane at a programmed time and thus controls the length of the vegetative cycle. By contrast, lytic single-stranded RNA and DNA phages accomplish lysis by producing a single lysis protein without muralytic activity.  相似文献   

10.
The life cycle of the malaria parasite contains three distinct invasive forms, or zoites. For at least two of these--the sporozoite and the blood-stage merozoite--invasion into their respective host cell requires the activity of parasite proteases. This review summarizes the evidence for this, discusses selected well-described proteolytic modifications linked to invasion, and describes recent progress towards identifying the proteases involved.  相似文献   

11.
We explore evolutionarily stable co-evolution of host-macroparasite interactions in a discrete-time two-species population dynamics model, in which the dynamics may be stable, cyclic or chaotic. The macroparasites are assumed to harm host individuals through decreased reproductive output. Hosts may develop costly immune responses to defend themselves against parasites. Parasites compete with conspecifics by adjusting their fecundities. Overall, the presence of both parasites and the immune response in hosts produces more stable dynamics and lower host population sizes than that observed in the absence of the parasites. In our evolutionary analyses, we show that maximum parasite fecundity is always an evolutionarily stable strategy (ESS), irrespective of the type of population interaction, and that maximum parasite fecundity generally induces a minimum parasite population size through over-exploitation of the host. Phenotypic polymorphisms with respect to immunity in the host species are common and expected in ESS host strategies: the benefits of immunication depend on the frequency of the immune hosts in the population. In particular, the steady-state proportions of immune hosts depend, in addition to all the parameters of the parasite dynamics only on the cost of immunity and on the virulence of parasites in susceptible hosts. The implicit ecological dynamics of the host-parasite interaction affect the proportion of immune host individuals in the population. Furthermore, when changes in certain population parameters cause the dynamics of the host-parasite interaction to move from stability to cyclicity and then to chaos, the proportion of immune hosts tends to decrease; however, we also detected counter-examples to this result. As a whole, incorporating immunological and genetic aspects, as well as life-history trade-offs, into host-macroparasite dynamics produces a rich extension to the patterns observed in the models of ecological interactions and epidemics, and deserves more attention than is currently the case.  相似文献   

12.
E Roth 《Blood cells》1990,16(2-3):453-60; discussion 461-6
Selected aspects of the metabolism of Plasmodium falciparum are reviewed, but conclusions based on the study of other species of plasmodia are intentionally not included since these may not be applicable. The parasites increase glucose consumption 50-100 fold as compared to uninfected red cells; most of the glucose is metabolized to lactic acid. The parasite contains a complete set of glycolytic enzymes. Some enzymes such a hexokinase, enolase and pyruvate kinase are vastly increased over corresponding levels in uninfected red cells. However, the pathway for synthesizing 2,3-diphosphoglycerate (2,3-DPG) is absent. Parasitized red cells show a decline in the concentration of 2,3-DPG which may function as an inhibitor for certain essential enzyme pathways. Pentose shunt activity is increased in absolute terms, but as a percent of total glucose consumption, there is a decrease during parasite infection of the red cell. The parasite contains a gene for G6PD and can produce a small quantity of parasite-encoded enzyme. It is not clear if the production of this enzyme can be up-regulated in G6PG deficient host red cells. The NADPH normally produced by the pentose shunt can be obtained from other parasite pathways (such as glutamate dehydrogenase). NADPH may subserve additional needs in the infected red cell such as driving diribonucleotide reductase activity--a rate limiting enzyme in DNA synthesis. The role of NADPH in protecting the parasite-red cell system against oxidative stress (via glutathione reduction) remains controversial. Parasitized red cells contain about 10 times more NAD(H) than uninfected red cells, but the NADP(H) content is unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
It has been a major challenge to develop effective therapeutics for stroke, a leading cause of death and serious debilitation. Intensive research in the past 15 years have implicated many regulators and the related mechanisms by which neuronal cell death is regulated. It is now clear that even a brief ischemic stroke may trigger complex cellular events that lead to both apoptotic and necrotic neuronal cell death in a progressive manner. Although efforts at developing specific chemical inhibitors for validated targets have been successful for in vitro enzymatic assays, the development of some of such inhibitors into human therapy has been often hindered by their in vivo bioavailability profile. Considerations for the ability to chemically target a cellular mechanism in manner compatible with disease targets in vivo might be emphasized early in the development process by putting a priority on identifying key targets that can be effectively targeted chemically. Thorough interrogation of cellular pathways by saturation chemical genetics may provide a novel strategy to identify multiple key molecular entities that can be targeted chemically in order to select a target suitable for the treatment of intended human diseases such as stroke.  相似文献   

14.
Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.  相似文献   

15.
Protozoan parasites belong to the most widespread and devastating human pathogens. Their ability to manipulate host responses and establish infection in their hosts continues to puzzle researchers. Recent developments of experimental model systems are contributing to the discovery of new aspects of the biology of parasite dissemination. Here, we review current knowledge on strategies utilized by the apicomplexan parasite Toxoplasma gondii to disseminate and establish infection in its host. Recent findings have revealed intricate mechanisms by which this obligate intracellular protozoan sequesters cellular functions of the immune system to assure propagation. These mechanisms include the hijacking of migratory leucocytes, modulation of migratory properties of infected cells and rapid transfer of parasites between different leucocyte populations by cytotoxicity‐induced parasite egress. Collectively, Toxoplasma strikes a delicate balance, assuring efficient dissemination and establishment of asymptomatic lifelong infection in its host while protecting its intracellular entity and limiting host pathology.  相似文献   

16.
为阐明糖链结构与功能的关系,寻找高灵敏度和高分离度的微量分析方法对糖 类物质的分析至关重要.近几年来,荧光标记方法作为糖类物质的色谱定量及辅助结 构分析的最佳选择,日益受到人们的广泛关注.荧光标记法分为柱前标记和柱后标记 两种,且灵敏度高、分离度好、有多种标记试剂可供选择.本文根据不同糖类物质的 结构特点,分别对中性糖和氨基糖以及含有唾液酸、糖醛酸、硫酸基的酸性糖的荧光 标记方法及其应用进行了系统的综述,并对近年来报道的荧光标记试剂的特点和反应 机理进行了比较和总结,以期为糖类物质微量分析方法的研究提供参考.  相似文献   

17.
18.
Ubiquitylation is one of the cardinal post‐translational modifications in the cell, balancing several distinct biological processes and acting as a pathogen recognition receptor during bacterial pathogen invasion. A dense layer of polyubiquitin chains marks invading bacteria that gain access to the host cytosol for their selective clearance via xenophagy. However, the enzymes that mediate recognition of cytosolic bacteria and generate this ubiquitin (Ub) coat remain largely elusive. To address this, we employed an image‐based RNAi screening approach to monitor the loss of Ub on Salmonella upon depletion of human Ub E3 ligases in cells. Using this approach, we identified ARIH1 as one of the ligases involved in the formation of Ub coat on cytosolic bacteria. In addition, we provide evidence that the RING‐between‐RING ligase ARIH1, together with LRSAM1 and HOIP, forms part of a network of ligases that orchestrates recognition of intracellular Salmonella and participates in the activation of the host cell immune response.  相似文献   

19.
20.
The properties of the malaria parasite-induced permeability pathways in the host red blood cell have been a major area of interest particularly in the context of whether the pathways are host- or parasite-derived. In the present study, the whole-cell configuration of the patch-clamp technique has been used to show that, compared with normal cells, chicken red blood cells infected by Plasmodium gallinaceum exhibited a 5-40-fold larger membrane conductance, which could be further increased up to 100-fold by raising intracellular Ca(2+) levels. The increased conductance was not due to pathways with novel electrophysiological properties. Rather, the parasite increased the activity of endogenous 24 pS stretch-activated non-selective cationic (NSC) and 62 pS calcium-activated NSC channels, and, in some cases, of endogenous 255 pS anionic channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号