首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asthma and asthma-related traits are complex diseases with strong genetic and environmental components. Rapid progress in asthma genetics has led to the identification of several candidate genes that are associated with asthma-related traits. Typically the phenotypic impact of each of these genes, including the ones most often replicated in association studies, is mild, but larger effects may occur when multiple variants synergize within a permissive environmental context. Despite the achievements made in asthma genetics formidable challenges remain. The development of novel, powerful tools for gene discovery, and a closer integration of genetics and biology, should help to overcome these challenges.  相似文献   

2.
Brca1和Brca2是乳腺癌易感基因,在家族性乳腺癌患者中的突变是可以遗传的,在散发性乳腺癌患者中有杂合性丢失(LOH),而且表达水平下降。体外实验证明,Brca1能抑制乳腺癌和卵巢癌细胞的增殖。Brca1和Brca2基因分别定位于17q12-21和13q12-13,编码序列分别为5711bp和10987bp,其表达有一定的组织特异性。BRCA1和BRCA2蛋白分别由1863个氨基酸和3418个氨基酸组成,这两个蛋白都具有Granin蛋白的某些特征。它们的功能目前还不是很清楚,但有证据表明这两个基因为生长发育所必须,并参与细胞增殖分化和DNA损伤修复等生命活动。  相似文献   

3.
4.

Background

The process of malignant transformation, progression and metastasis of melanoma is poorly understood. Gene expression profiling of human cancer has allowed for a unique insight into the genes that are involved in these processes. Thus, we have attempted to utilize this approach through the analysis of a series of primary, non-metastatic cutaneous tumors and metastatic melanoma samples.

Methods

We have utilized gene microarray analysis and a variety of molecular techniques to compare 40 metastatic melanoma (MM) samples, composed of 22 bulky, macroscopic (replaced) lymph node metastases, 16 subcutaneous and 2 distant metastases (adrenal and brain), to 42 primary cutaneous cancers, comprised of 16 melanoma, 11 squamous cell, 15 basal cell skin cancers. A Human Genome U133 Plus 2.0 array from Affymetrix, Inc. was utilized for each sample. A variety of statistical software, including the Affymetrix MAS 5.0 analysis software, was utilized to compare primary cancers to metastatic melanomas. Separate analyses were performed to directly compare only primary melanoma to metastatic melanoma samples. The expression levels of putative oncogenes and tumor suppressor genes were analyzed by semi- and real-time quantitative RT-PCR (qPCR) and Western blot analysis was performed on select genes.

Results

We find that primary basal cell carcinomas, squamous cell carcinomas and thin melanomas express dramatically higher levels of many genes, including SPRR1A/B, KRT16/17, CD24, LOR, GATA3, MUC15, and TMPRSS4, than metastatic melanoma. In contrast, the metastatic melanomas express higher levels of genes such as MAGE, GPR19, BCL2A1, MMP14, SOX5, BUB1, RGS20, and more. The transition from non-metastatic expression levels to metastatic expression levels occurs as melanoma tumors thicken. We further evaluated primary melanomas of varying Breslow's tumor thickness to determine that the transition in expression occurs at different thicknesses for different genes suggesting that the "transition zone" represents a critical time for the emergence of the metastatic phenotype. Several putative tumor oncogenes (SPP-1, MITF, CITED-1, GDF-15, c-Met, HOX loci) and suppressor genes (PITX-1, CST-6, PDGFRL, DSC-3, POU2F3, CLCA2, ST7L), were identified and validated by quantitative PCR as changing expression during this transition period. These are strong candidates for genes involved in the progression or suppression of the metastatic phenotype.

Conclusion

The gene expression profiling of primary, non-metastatic cutaneous tumors and metastatic melanoma has resulted in the identification of several genes that may be centrally involved in the progression and metastatic potential of melanoma. This has very important implications as we continue to develop an improved understanding of the metastatic process, allowing us to identify specific genes for prognostic markers and possibly for targeted therapeutic approaches.  相似文献   

5.
Etiologic impact of known cancer susceptibility genes   总被引:2,自引:0,他引:2  
The impact of a gene variant on the population burden of cancer can be measured by the population attributable fraction (PAF), which depends on the risk conferred by the variant, genotype relative risk (GRR), the frequency of the variant in the population and the mode of inheritance. PAF defines the proportion of the disease in the study population due to a gene variant, hence the synonymic term, etiologic fraction. After a review of the literature, 27 confirmed cancer susceptibility genes, groups of genes and loci were selected for analysis on the basis of their prevalence and availability of validated GRR data. The covered variants represent the most common established cancer susceptibility genes; those not included have marginal PAFs on common cancers. The PAF due to known genes at the covered sites was highest for brain hemangioblastoma (19%), conferred by the VHL gene. For colorectal cancer, the PAF estimates amounted to 7.0%. Including genes and identified loci from whole genome scans, PAFs for both breast and prostate cancers summed up to 70%. The derived estimates should rectify common overstatements on the contribution of individual high penetrance genes on common cancers at the population level. More dramatically, the estimates show the large PAFs conferred by the recently discovered breast, prostate and colorectal cancer loci, most of which are not known to alter coding sequences or expression patterns and they thus act through yet unexplained mechanisms. Although of low risk, these common variants appear to explain large proportions of breast and prostate cancers in the population.  相似文献   

6.
The multifactorial process of carcinogenesis involves mutations in oncogenes, or tumor suppressor genes, as well as the influence of environmental etiological factors. Common DNA polymorphisms in low penetrance genes have emerged as genetic factors that seem to modulate an individual’s susceptibility to malignancy. Genetic studies, which lead to a true association, are expected to increase understanding of the pathogenesis of each malignancy and to be a powerful tool for prevention and prognosis in the future. Here, we review the findings of genetic association studies of gene polymorphisms in gynecologic cancer with special reference to glutathione-S-transferase, FAS/CD95 and p53 genes including our recent research results.  相似文献   

7.
Transposon-based approaches are very powerful for identification of essential and infection-related genes in bacteria, particularly in the context of microbial genomics. We describe recent progress in several of these approaches, and their underlying principles. The essential gene test (EGT) is a transposon-based technique that can rapidly identify a nucleotide sequence from a database as essential or dispensable. Also, variations of in vitro transposon mutagenesis applications, such as genomic analysis and mapping by in vitro transposition (GAMBIT), are described. The development of techniques including PCR-based signature-tagged mutagenesis is now used to find essential virulence genes in different bacterial hosts. These approaches form the basis for the identification of microbial targets in development of novel antimicrobials and vaccines by the biotechnology and pharmaceutical industry.  相似文献   

8.
乳腺癌是与环境因素密切相关的肿瘤之一,致癌因素诱发的DNA损伤信号被传送到多个效应因子,最终导致细胞坏死和癌变。其中,共济失调性毛细血管扩张症致病基因(Ataxia-telangiectasia mutated,ATM)编码的ATM蛋白激酶是DNA损伤应答的主要调控因子,其通过磷酸化一系列下游底物来应对DNA损伤,这在抑制乳腺癌的发生发展中起到了重要的作用。ATM基因突变后,导致损伤DNA不能得到正确修复,最终加速了乳腺癌的转化和增殖。随着对ATM基因结构、功能及乳腺癌易感性机制研究的深入,ATM基因与乳腺癌易感性关系已引起广泛的重视。以下就ATM基因突变、多态性和甲基化等几个方面与乳腺癌易感性的关系进行了简要概述。  相似文献   

9.
Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy.  相似文献   

10.
MicroRNAs play an important role in the regulation of expression of many genes involved in cancer pathogenesis. One of the causes of miRNA level deregulation in tumors is the methylation of CpG islands in the promoter regions of the genes that encode them. Hypermethylation may lead to the suppression of miRNA gene expression and, as a consequence, to a decrease in their inhibitory effect on target gene mRNAs. A search for new miRNA genes hypermethylated in breast cancer has been carried out in the present study. The methylation of five miRNA genes associated with breast cancer (miR-132, miR-1258, miR-107, miR-130b, miR-137) has been as studied using a representative set of 41 breast cancer samples by methylation-specific PCR. Three new genes, MIR-132, MIR-137 and MIR-1258, with a high frequency of hypermethylation (41, 37 and 34%, respectively) have been identified in breast cancer. The methylation of these genes in the breast tissues of ten donors without cancer pathology in anamnesis was only found in single cases. These results enable the involvement of three miRNAs (miR-132, miR-137, miR-1258) and the methylation of the genes that encode them in the pathogenesis of breast cancer to be suggested.  相似文献   

11.
Triple-negative breast cancer (TNBC) has been reported to be correlated with high expression of proliferation markers as well as constitutive activation of metastasis-relevant signaling pathways. For many years, breast cancer researchers have been investigating specific and effective methods to treat or to control the development of TNBC, but promising therapeutic options remain elusive. In this study, we have demonstrated that alkylamide derivatives of bexarotene DK-1–150 and DK-1–166 induce apoptotic cell death in TNBC cell lines without causing cytotoxicity in the normal mammary epithelial cell line. Furthermore, the bexarotene derivatives also showed significant effects in inhibiting TNBC cell proliferation and migration, modulating cancer stem cell markers expressions, as well as limiting the epithelial-mesenchymal transition (EMT) activities of TNBC cell lines in terms of downregulating EMT marker and blocking nuclear translocation of β-catenin. Therefore, we propose the alkylamide derivatives of bexarotene as potential candidates for novel anticancer therapeutics against TNBC.  相似文献   

12.
Breast cancer is a complex disease, showing a strong genetic component. Several human susceptibility genes have been identified, especially in the last few months. Most of these genes are low-penetrance genes and it is clear that numerous other susceptibility genes remain to be identified. The function of several susceptibility genes indicates that one critical biological pathway is the DNA damage response. However, other pathways certainly play a significant role in breast cancer susceptibility. Rodent models of breast cancer are useful models in two respects. They can help identify new mammary susceptibility genes by taking advantage of the very divergent susceptibilities exhibited by different mouse or rat strains and carrying out relevant genetic analyses. They also provide investigators with experimental systems that can help decipher the mechanism(s) of resistance to mammary cancer. Recent genetic and biological results obtained with mouse and especially with rat strains indicate that (1) numerous quantitative trait loci control mammary cancer susceptibility or resistance, with distinct loci acting in different strains, and (2) distinct resistance mechanisms operate in different rat resistant strains, precocious mammary differentiation being one of these mechanisms.  相似文献   

13.
Breast cancer is the most prevalent cancer among women in Western countries, and its prevalence is also increasing in Asia. The major risk factor for breast cancer can be traced to reproductive events that influence the lifetime levels of hormones. However, a large percentage of breast cancer cases cannot, be explained by these risk factors. The identification of susceptibility factors that predispose individuals to breast cancer (for instance, if they are exposed to particular environmental agents) could possibly give further insight into the etiology of this malignancy and provide targets for the future development of therapeutics. The most interesting candidate genes include those that mediate a range of functions. These include carcinogen metabolism, DNA repair, steroid hormone metabolism, signal transduction, and cell cycle control. we conducted a hospital-based case-control study on South Korea to evaluate the potential modifying role of the genetic pollymprphisms of selected low penetrance gens that are involved carcinogen metabolisms (i.e., CYP1A1, CYP2E1, GSTM1/T1/P1, NAT1/2, etc.), estrogen synthesis and metabolism (i.e., CYP19, CYP17, CYP1B1, COMT, ER-alpha, etc.), DNA repair (i.e., XRCC1/3, ERCC2/4, ATM, AGT, etc.), and signal transduction as well as others (i.e., TGF- beta, IGF-1, TNF- beta, IL-1B, IL-1RN, etc.). We also took into account the potential interaction between these and the known risk factors of breast cancer. The results of selected genes will be presented in this mini-review.  相似文献   

14.
Discovering new genes with advanced homology detection   总被引:2,自引:0,他引:2  
  相似文献   

15.
Rare HRAS alleles and susceptibility to human breast cancer   总被引:2,自引:0,他引:2  
The suggestion that inherited rare alleles at the HRAS oncogene locus might be associated with susceptibility to breast cancer led us to test linkage of HRAS and the neighboring region of 11p15 to breast cancer susceptibility in 12 high-risk families. Linkage could be excluded within 17 cM of HRAS; the lod score for close linkage to HRAS was -19.9. In addition, rare HRAS alleles segregated independently of breast cancer in 8 families in which both occurred. Among unrelated breast cancer patients not selected for family history, rare HRAS alleles were slightly, but not significantly, more frequent than among controls (0.11 vs 0.04, P = 0.11). The HRAS region of 11p is not the site of a primary alteration leading to breast cancer.  相似文献   

16.
Brain metastases (BMs) usually develop in breast cancer (BC) patients. Thus, the molecular mechanisms of breast cancer brain metastasis (BCBM) are of great importance in designing therapeutic strategies to treat or prevent BCBM. The present study attempted to identify novel diagnostic and prognostic biomarkers of BCBM. Two datasets (GSE125989 and GSE100534) were obtained from the Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs) in cases of BC with and without brain metastasis (BM). A total of 146 overlapping DEGs, including 103 up-regulated and 43 down-regulated genes, were identified. Functional enrichment analysis showed that these DEGs were mainly enriched for functions including extracellular matrix (ECM) organization and collagen catabolic fibril organization. Using protein–protein interaction (PPI) and principal component analysis (PCA) analysis, we identified ten key genes, including LAMA4, COL1A1, COL5A2, COL3A1, COL4A1, COL5A1, COL5A3, COL6A3, COL6A2, and COL6A1. Additionally, COL5A1, COL4A1, COL1A1, COL6A1, COL6A2, and COL6A3 were significantly associated with the overall survival of BC patients. Furthermore, COL6A3, COL5A1, and COL4A1 were potentially correlated with BCBM in human epidermal growth factor 2 (HER2) expression. Additionally, the miR-29 family might participate in the process of metastasis by modulating the cancer microenvironment. Based on datasets in the GEO database, several DEGs have been identified as playing potentially important roles in BCBM in BC patients.  相似文献   

17.
Cheung LW  Lee YF  Ng TW  Ching WK  Khoo US  Ng MK  Wong AS 《FEBS letters》2007,581(24):4668-4674
The range of BRCA1/BRCA2 gene mutations is diverse and the mechanism accounting for this heterogeneity is obscure. To gain insight into the endogenous mutational mechanisms involved, we evaluated the association of specific sequences (i.e. CpG/CpNpG motifs, homonucleotides, short repeats) and mutations within the genes. We classified 1337 published mutations in BRCA1 (1765 BRCA2 mutations) for each specific sequence, and employed computer simulation combined with mathematical calculations to estimate the true underlying tendency of mutation occurrence. Interestingly, we found no mutational bias to homonucleotides and repeats in deletions/insertions and substitutions but striking bias to CpG/CpNpG in substitutions in both genes. This suggests that methylation-dependent DNA alterations would be a major mechanism for mutagenesis.  相似文献   

18.
19.
The signaling events that drive familial breast cancer (FBC) risk remain poorly understood. While the majority of genomic studies have focused on genetic risk variants, known risk variants account for at most 30% of FBC cases. Considering that multiple genes may influence FBC risk, we hypothesized that a pathway‐based strategy examining different data types from multiple tissues could elucidate the biological basis for FBC. In this study, we performed integrated analyses of gene expression and exome‐sequencing data from peripheral blood mononuclear cells and showed that cell adhesion pathways are significantly and consistently dysregulated in women who develop FBC. The dysregulation of cell adhesion pathways in high‐risk women was also identified by pathway‐based profiling applied to normal breast tissue data from two independent cohorts. The results of our genomic analyses were validated in normal primary mammary epithelial cells from high‐risk and control women, using cell‐based functional assays, drug‐response assays, fluorescence microscopy, and Western blotting assays. Both genomic and cell‐based experiments indicate that cell–cell and cell–extracellular matrix adhesion processes seem to be disrupted in non‐malignant cells of women at high risk for FBC and suggest a potential role for these processes in FBC development.  相似文献   

20.
In the National Cancer Institute Cancer Genetic Markers of Susceptibility (CGEMS) genome-wide association study of breast cancer, a single nucleotide polymorphism (SNP) marker, rs999737, in the 14q24.1 interval, was associated with breast cancer risk. In order to fine map this region, we imputed a 3.93?MB region flanking rs999737 for Stages 1 and 2 of the CGEMS study (5,692 cases, 5,576 controls) using the combined reference panels of the HapMap 3 and the 1000 Genomes Project. Single-marker association testing and variable-sized sliding-window haplotype analysis were performed, and for both analyses the initial tagging SNP rs999737 retained the strongest association with breast cancer risk. Investigation of contiguous regions did not reveal evidence for an additional independent signal. Therefore, we conclude that rs999737 is an optimal tag SNP for common variants in the 14q24.1 region and thus narrow the candidate variants that should be investigated in follow-up laboratory evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号