首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

3.
4.
5.
Huang H  Atshaves BP  Frolov A  Kier AB  Schroeder F 《Biochemistry》2005,44(30):10282-10297
Although studies in vitro and in yeast suggest that acyl-CoA binding protein ACBP may modulate long-chain fatty acyl-CoA (LCFA-CoA) distribution, its physiological function in mammals is unresolved. To address this issue, the effect of ACBP on liver LCFA-CoA pool size, acyl chain composition, distribution, and transacylation into more complex lipids was examined in transgenic mice expressing a higher level of ACBP. While ACBP transgenic mice did not exhibit altered body or liver weight, liver LCFA-CoA pool size increased by 69%, preferentially in saturated and polyunsaturated, but not monounsaturated, LCFA-CoAs. Intracellular LCFA-CoA distribution was also altered such that the ratio of LCFA-CoA content in (membranes, organelles)/cytosol increased 2.7-fold, especially in microsomes but not mitochondria. The increased distribution of specific LCFA-CoAs to the membrane/organelle and microsomal fractions followed the same order as the relative LCFA-CoA binding affinity exhibited by murine recombinant ACBP: saturated > monounsaturated > polyunsaturated C14-C22 LCFA-CoAs. Consistent with the altered microsomal LCFA-CoA level and distribution, enzymatic activity of liver microsomal glycerol-3-phosphate acyltransferase (GPAT) increased 4-fold, liver mass of phospholipid and triacylglyceride increased nearly 2-fold, and relative content of monounsaturated C18:1 fatty acid increased 44% in liver phospholipids. These effects were not due to the ACBP transgene altering the protein levels of liver microsomal acyltransferase enzymes such as GPAT, lysophosphatidic acid acyltransferase (LAT), or acyl-CoA cholesterol acyltransferase 2 (ACAT-2). Thus, these data show for the first time in a physiological context that ACBP expression may play a role in LCFA-CoA metabolism.  相似文献   

6.
Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. Overexpression of ApoD in mouse neural tissue induces the development of a non-inflammatory hepatic steatosis in 12-month-old transgenic animals. Previous data indicates that accumulation of arachidonic acid, ApoD's preferential ligand, and overactivation of PPARγ are likely the driving forces in the development of the pathology. However, the lack of inflammation under those conditions is surprising. Hence, we further investigated the apparent repression of inflammation during hepatic steatosis development in aging transgenic animals. The earliest modulation of lipid metabolism and inflammation occurred at 6 months with a transient overexpression of L-PGDS and concomitant overproduction of 15d-PGJ2, a PPARγ agonist. Hepatic lipid accumulation was detectable as soon as 9 months. Inflammatory polarization balance varied in time, with a robust anti-inflammatory profile at 6 months coinciding with 15d-PGJ2 overproduction. Omega-3 and omega-6 fatty acids were preferentially stored in the liver of 12-month-old transgenic mice and resulted in a higher omega-3/omega-6 ratio compared to wild type mice of the same age. Thus, inflammation seems to be controlled by several mechanisms in the liver of transgenic mice: first by an increase in 15d-PGJ2 production and later by a beneficial omega-3/omega-6 ratio. PPARγ seems to play important roles in these processes. The accumulation of several omega fatty acids species in the transgenic mouse liver suggests that ApoD might bind to a broader range of fatty acids than previously thought.  相似文献   

7.
Soy intake acts hypolipidemically. Besides isoflavones, soy protein itself is suggested to influence plasma lipid concentrations. We investigated the effects of an alcohol-washed isoflavone-poor soy protein isolate on plasma and liver lipids and the hepatic expression of genes encoding proteins involved in cholesterol and fatty acid metabolism. Therefore, rats were fed diets containing 200 g/kg of either ethanol-extracted soy protein isolate or casein over 22 days. Rats fed soy protein isolate had markedly lower concentrations of liver cholesterol and lower concentrations of triglycerides in the liver and in plasma than rats fed casein (P<.05). Rats fed soy protein isolate had lower relative mRNA concentrations of sterol-regulatory element-binding protein (SREBP)-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase, low-density lipoprotein receptor, cholesterol 7alpha-hydroxylase, apolipoprotein B, Delta9-desaturase and glucose-6-phosphate dehydrogenase in the liver than rats fed casein (P<.05). Hepatic mRNA concentration of SREBP-1c tended to be lower in rats fed soy protein isolate (P<.10). Hepatic mRNA concentrations of insulin-induced gene (Insig) 1 and Insig-2 and of microsomal triglyceride transfer protein, as well as plasma concentrations of free fatty acids, insulin and glucagon, were not different between the two groups. In conclusion, this study suggests that isoflavone-poor soy protein isolate affects cellular lipid homeostasis by the down-regulation of SREBPs and its target genes in the liver, which are involved in the synthesis of cholesterol and triglycerides.  相似文献   

8.
We have studied the influence of thyroid hormone status in vivo on expression of the genes encoding guanine nucleotide-binding regulatory protein (G protein) alpha-subunits Gs alpha, Gi alpha(2), Gi alpha(3), and both the 36-kDa form (beta 1) and the 35-kDa form (beta 2) of the beta-subunit in rat ventricle. The relative amounts of immunoactive Gi alpha(2) and Gi alpha(3) were greater in ventricular membranes from hypothyroid animals than from euthyroid animals (1.9- and 2.6-fold, respectively). A corresponding 2.3-fold increase in Gi alpha(2) mRNA was observed as well as a 1.5-fold increase in Gi alpha(3) mRNA. The relative amounts of immunoactive beta 1 and beta 2 polypeptides were also increased (2.8- and 1.8-fold, respectively) in the hypothyroid state and corresponded with comparable increases in the relative levels of beta 1 and beta 2 mRNAs. No difference was seen between the amounts of Gi alpha(2), Gi alpha(3), beta 1, and beta 2 in the euthyroid state and the hyperthyroid state. In contrast to these effects of thyroid hormone status on Gi alpha and beta, the steady-state amounts of Gs alpha protein and mRNA were not altered by thyroid hormone status. Thyroid hormone status did not alter sensitivity of adenylyl cyclase to stimulation by sodium fluoride or guanyl-5'-yl imidodiphosphate (GppNHp), nor did it influence GppNHp-induced inhibition of forskolin-stimulated enzyme activity. These results demonstrate that thyroid hormone status in vivo can regulate expression of specific G protein subunits in rat myocardium. However, the physiological consequences of these changes remain unclear.  相似文献   

9.
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.  相似文献   

10.
Increases in the survival rate of men treated with chemotherapeutic drugs and their desire to have children precipitate concerns about the effects of these drugs on germ cells. Azoospermia, oligospermia, and infertility are common outcomes resulting from treatment with cyclophosphamide, an alkylating agent. Exposure of male rats to cyclophosphamide results in dose-dependent and time-specific adverse effects on progeny outcome. Elucidation of the effects of chronic low-dose cyclophosphamide treatment on the expression of stress response genes in male germ cells may provide insight into the mechanisms underlying such adverse effects. Male rats were gavaged with saline or cyclophosphamide (6 mg/kg) for 4-5 wk; pachytene spermatocytes, round spermatids, and elongating spermatids were isolated; RNA was extracted and probed on cDNA arrays containing 216 cDNAs. After saline treatment, 125 stress response genes were expressed in pachytene spermatocytes (57% of genes studied), 122 in round spermatids (56%), and 83 in elongating spermatids (38%). Cyclophosphamide treatment reduced the number of genes detected in all germ cell types. The predominant effect of chronic cyclophosphamide exposure was to decrease the expression level of genes in pachytene spermatocytes (34% of genes studied), round spermatids (29%), and elongating spermatids (4%). In elongating spermatids only, drug treatment increased the expression of 8% of the genes studied. The expression profiles of genes involved in DNA repair, posttranslational modification, and antioxidant defense in male germ cells were altered by chronic cyclophosphamide treatment. We hypothesize that the effects of cyclophosphamide exposure on germ cell gene expression during spermatogenesis may have adverse consequences on male fertility and progeny outcome.  相似文献   

11.
12.
This experiment was conducted to investigate the effects of oral administration of monosodium glutamate (MSG) on expression of genes for hepatic lipid and nitrogen metabolism in piglets. A total of 24 newborn pigs were assigned randomly into one of four treatments (n = 6/group). The doses of oral MSG administration, given at 8:00 and 18:00 to sow-reared piglets between 0 and 21 days of age, were 0 (control), 0.06 (low dose), 0.5 (intermediate dose), and 1 (high dose) g/kg body weight/day. At the end of the 3-week treatment, serum concentrations of total protein and high-density lipoprotein cholesterol in the intermediate dose group were elevated than those in the control group (P < 0.05). Hepatic mRNA levels for fatty acid synthase, acetyl-coA carboxylase, insulin-like growth factor-1, glutamate–oxaloacetate transaminase, and glutamate–pyruvate transaminase were higher in the middle-dose group (P < 0.05), compared with the control group. MSG administration did not affect hepatic mRNA levels for hormone-sensitive lipase or carnitine palmitoyl transferase-1. We conclude that oral MSG administration alters hepatic expression of certain genes for lipid and nitrogen metabolism in suckling piglets.  相似文献   

13.
We recently reported that a red meat (beef) diet relative to a casein-based diet increases protein kinase C (PKC) activity in rat colonic mucosa. The purpose of this study was to further elucidate the effects of a high-beef diet on colonic intracellular signal transduction by analyzing steady-state protein levels of different PKC isozymes as well as activities of the three types of sphingomyelinases. Male Wistar rats (n = 12/group) were fed AIN93G-based diets either high in beef or casein for 4 weeks. Rats fed the beef diet had significantly (P < 0.05) higher cytosolic PKC alpha and lower membrane PKC delta protein levels than rats fed the casein diet. The beef-fed rats also had alterations in subfractions of PKC zeta/lambda so that they had a significantly (P = 0.001) lower level of membrane 70 & 75 kDa fraction and a higher (P = 0.001) level of cytosolic 40 & 43 kDa fraction than rats fed the casein diet. Because protein levels analyzed with a PKC zeta-specific antibody were similar, these differences in PKC zeta/lambda were probably due to changes in PKC lambda expression. PKC beta2 levels did not differ between the dietary groups. Diet had no significant effect on the activity of acid, neutral, or alkaline sphingomyelinase. This study demonstrated that consumption of a high-beef diet is capable of modulating PKC isozyme levels in rat colon, which might be one of the mechanisms whereby red meat affects colon carcinogenesis.  相似文献   

14.
Imbalance in the supply and utilization of fatty acids (FA) is thought to contribute to intrahepatic lipid (IHL) accumulation in obesity. The aim of this study was to determine the time course of changes in the liver capacity to oxidize and store FA in response to high-fat diet (HFD). Adult male Wistar rats were fed either normal chow or HFD for 2.5weeks (short-term) and 25weeks (long-term). Short-term HFD feeding led to a 10% higher palmitoyl-l-carnitine-driven ADP-stimulated (state 3) oxygen consumption rate in isolated liver mitochondria indicating up-regulation of β-oxidation. This adaptation was insufficient to cope with the dietary FA overload, as indicated by accumulation of long-chain acylcarnitines, depletion of free carnitine and increase in FA content in the liver, reflecting IHL accumulation. The latter was confirmed by in vivo((1))H magnetic resonance spectroscopy and Oil Red O staining. Long-term HFD feeding caused further up-regulation of mitochondrial β-oxidation (24% higher oxygen consumption rate in state 3 with palmitoyl-l-carnitine as substrate) and stimulation of mitochondrial biogenesis as indicated by 62% higher mitochondrial DNA copy number compared to controls. These adaptations were paralleled by a partial restoration of free carnitine levels and a decrease in long-chain acylcarnitine content. Nevertheless, there was a further increase in IHL content, accompanied by accumulation of lipid peroxidation and protein oxidation products. In conclusion, partially effective adaption of hepatic FA metabolism to long-term HFD feeding came at a price of increased oxidative stress, caused by a combination of higher FA oxidation capacity and oversupply of FA.  相似文献   

15.
《Epigenetics》2013,8(7):619-626
Biological responses to environmental stress, including nutrient limitation are mediated in part by epigenetic modifications including DNA methylation. Insulin-like growth factor II (Igf2) and H19 are subject to epigenetic modifications leading to genomic imprinting. The present study was designed to test the effect of maternal low protein diet on the Igf2/H19 locus in offspring. Pregnant Sprague-Dawley rats were fed diets containing 180 g/kg casein (control) or 90 g/kg (LP) casein with either 1 mg/kg (LP) or 3 mg/kg folic acid (LPF). LP diet increased Igf2 and H19 gene expression in the liver of day 0 male offspring and the addition of folic acid reduced the mRNA level in LPF rats to that of the control group. DNA methylation in Imprinting Control Region (ICR) of Igf2/H19 locus increased significantly following maternal LP diet but rats fed the LPF diet did not exhibit the hypermethylation. The Differential Methylation Region 2 (DMR2) did not show any change in methylation in either LP or LPF rats. The expression of Dnmt1 and Dnmt3a, the members of DNA methyltransferase family, and methyl CpG-binding domain 2 (Mbd2) was significantly increased following the maternal LP diet but did not differ between the control and LPF group. There is a strong correlation between methylation of ICR with the expression of Igf2 and H19. These results suggested that maternal exposure to a low protein diet and folic acid during gestation alters gene expression of Igf2 and H19 in the liver by regulating the DNA methylation of these genes. The DNA methyltransferase machinery may be involved into the programming of imprinted genes through the imprinted control region.  相似文献   

16.
17.
18.
19.
This report describes the rapid effects of GnRH and an agonist [D-Ala6, des-Gly10] GnRH ethylamide (GnRHa) on polyphosphoinositide metabolism in rat granulosa cells. As indicated by the depletion of cellular levels of 32P-prelabeled triphosphoinositide (TPI) and diphosphoinositide (DPI), GnRHa rapidly stimulated the hydrolysis of TPI and DPI. The effect of GnRHa was maximal at the earliest time point examined (30 sec) and preceded GnRHa-induced increases in labeling of phosphatidylinositol. A specific GnRH antagonist had no effect on TPI or DPI levels, but prevented the polyphosphoinositide depletion induced by GnRH. LH did not stimulate depletion of 32P-polyphosphoinositides. The rapid and specific effects of GnRH on polyphosphoinositide depletion may represent an early and possibly initiating event in the action of GnRH.  相似文献   

20.
Little is known about the contribution of plasma free fatty acid (FFA) and intramuscular triacylglycerol (TG) as substrates for energy production during prolonged electrical stimulation of skeletal muscle. The purpose of this study was to investigate the effects of continuous and intermittent electrical stimulation protocols of different intensities on exogenous FFA oxidation, exogenous FFA incorporation into intracellular TG, and intracellular TG content in the isolated in vitro rat flexor digitorum brevis muscle preparation. Muscles were electrically stimulated for 0.5 h continuously at 0.2 Hz or intermittently (30 s on, 60 s off) at 0.2, 0.4, 0.8, and 5.0 Hz while incubated at 37 degrees C in 0.5 mM palmitate-3% bovine serum albumin medium (pH 7.4) in the presence of insulin (100 microU/ml) and glucose (11 mM). Control muscles were frozen immediately after excision or incubated for 0.5 h. At similar frequencies, less exogenous FFA esterification and more exogenous FFA oxidation occurred during continuous than during intermittent stimulation. As the frequency of intermittent stimulation increased, the amount of exogenous FFA esterified decreased and the amount of exogenous FFA oxidized increased. The data also indicate that at least a portion of TG was constantly being hydrolyzed during electrical stimulation. Under stimulation conditions in which exogenous FFA esterification was below the control (resting muscle) level, intramuscular TG content was significantly decreased compared with control TG content values. Thus both plasma FFA and intramuscular TG are substrates for energy production during electrical stimulation. However, the stimulation parameters employed affect the quantities utilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号