首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li  Zhi-an  Peng  Shao-lin  Rae  Debbie J.  Zhou  Guo-yi 《Plant and Soil》2001,229(1):105-116
Litter decomposition and nitrogen mineralization were investigated in subtropical plantation forests in southern China. The CO2 –C release from incubated litter and the forest floor of Acacia mangium, Acacia auriculaeformis, Eucalyptus citriodora, Pinus elliotii and Schima superba stands were used to estimate relative rates of litter decomposition. Decomposition was not positively correlated with litter nitrogen. E. citridora litter decomposed most rapidly and A. mangium litter most slowly, both with and without the addition of exotic nitrogen. Aerobic incubation and intact soil core incubation at 30 °C over a period of 30 days were used to assess nitrogen mineralization of six forest soils. Although there were differences in results obtained using the two methods, patterns between legume and non-legume species were the same regardless of method. All soils had pH values below 4.5, but this did not prevent nitrification. The dominant form of mineral nitrogen was nitrate for legume species and ammonium for non-legume species. The nitrogen mineralization potential was highest for soils in which legumes were growing.  相似文献   

2.
为揭示固氮树种土壤养分转化的酶学机制,对固氮树种[厚荚相思(Acacia crassicarpa)、黑木相思(A. melanoxylon)、卷荚相思(A.cincinnata)、大叶相思(A.auriculiformis)和马占相思(A.mangium)]及非固氮树种尾巨桉(Eucalyptusurophylla×E.grandis)人工林的土壤养分含量、酶活性及其相关性进行研究。结果表明,相思林40~60cm土层的pH均高于尾巨桉林;5种相思林土壤各土层的TP、TK含量均低于尾巨桉林,而20~40 cm土层的TC、TN含量均高于尾巨桉林,黑木相思林和马占相思林各土层的有效养分均显著高于尾巨桉林(P0.05)。0~10 cm土层中,相思林的土壤酸性磷酸酶和纤维素酶活性均高于尾巨桉林,大叶相思林的土壤脲酶、蔗糖酶、纤维素酶和芳基硫酸酯酶活性显著高于尾巨桉林(P0.05),卷荚相思林的土壤脲酶、纤维素酶、几丁质酶和淀粉酶活性显著高于尾巨桉林(P0.05)。相关分析结果表明,土壤脲酶、蔗糖酶和几丁质酶活性与AP显著负相关(P0.05),蔗糖酶和纤维素酶活性与NH4+-N显著负相关(P 0.05),脲酶、纤维素酶、芳基硫酸酯酶与土壤TK显著负相关(P0.05),几丁质酶活性与TN含量呈显著正相关(P0.05),土壤淀粉酶活性与NH4+-N呈显著正相关(P 0.05),过氧化氢酶活性与土壤TK含量呈显著正相关。可见,与尾巨桉人工林相比,在我国南方退化山地引种相思树可提高土壤关键酶的活性,对土壤有效养分具有明显改良作用,有利于退化地土壤的生态修复及人工林长期生产力的维持。  相似文献   

3.
This study compared litter production, litter decomposition and nutrient return in pure and mixed species plantations. Dry weight and N, P, K, Ca, Mg quantities in the litterfall were measured in one pure Cunninghamia lanceolata plantation (PC) and two mixed-species plantations of C. lanceolata with Alnus cremastogyne (MCA) and Kalopanax septemlobus (MCK) in subtropical China. Covering 6 years of observations, mean annual litter production of MCA (4.97 Mg·ha−1) and MCK (3.97 Mg·ha−1) was significantly higher than that of PC (3.46 Mg·ha−1). Broadleaved trees contributed 42% of the total litter production in MCA and 31% in MCK. Introduction of broadleaved tree species had no significant effect on litterfall pattern. Total litterfall was greatest in the dry season from November to March. Nutrient returns to the forest floor through leaf litter were significantly higher in both MCA and MCK than in PC (P < 0.05). The amounts of N, K, and Mg returned to the forest floor through leaf litter were highest in the MCA, and P and Ca returns were highest in the MCK. Percent contribution of broadleaf litter to total nutrient returns ranged from 41.7% to 86.9% in MCA and from 49.3% to 74.8% in MCK. The decomposition rate of individual leaf litter increased in the order: C. lanceolata < K. septemlobus < A. cremastogyne. Litter mixing had a positive effect on decomposition rate of the more recalcitrant litter and promoted nutrient return. Relative to mass loss of A. cremastogyne decomposing alone, higher mass loss of the mixture of C. lanceolata and A. cremastogyne was observed after 330 days of decomposition. These results indicate that mixed plantations of different tree species have advantages over monospecific plantations with regards to nutrient fluxes and these advantages have relevance to restoration of degraded sites. Responsible Editor: Alfonso Escudero.  相似文献   

4.
Plantations cover large areas in many countries, and the enhancement of plantation biodiversity is an increasingly important ecological concern. Many studies have demonstrated that overstory composition is important because it influences understory regeneration. To compare the understory vegetation and analyze its determinant factors, six typical plantations in South China were investigated: Acacia mangium plantation, Schima superba plantation, Eucalyptus citriodora plantation, E. exserta plantation, mixed‐coniferous plantation, and mixed native species plantation. The results show that native species plantations shaded out more grasses and herbs than exotic species plantations, mixed‐species plantations recruited more understory species than monoculture plantations, the leguminous species plantation had higher soil nitrogen than nonleguminous species plantations, and understory vegetation in the mixed‐coniferous plantation was similar to that of mixed, native broadleaf species plantation. Although light is the crucial environmental factor affecting the understory community and diversity among the 14 measured factors, other environmental variables such as soil nutrients and soil moisture are also important.  相似文献   

5.
非结构性碳水化合物(NSC)是凋落物中的易分解组分,在凋落物分解早期快速释放进入土壤并被微生物利用,参与森林土壤生物地球化学循环,因此新鲜凋落物中NSC变化规律是认识森林土壤碳和养分循环的关键之一。选取亚热带常绿阔叶林优势树种米槠(Castanopsis carlesii)和主要造林树种杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)为研究对象,分析其新鲜凋落叶和凋落枝中NSC(可溶性糖和淀粉)含量的动态变化规律。结果表明:凋落物中NSC含量在不同月份表现出明显的时间动态,米槠、杉木和马尾松凋落叶和凋落枝中NSC含量总体上在11—12月呈上升趋势,而在2—6月呈缓慢下降趋势。不同类型的凋落物NSC含量存在显著差异,米槠、杉木和马尾松凋落叶中NSC含量分别为3.03%—3.56%、2.18%—4.37%、3.38%—4.89%,凋落枝中NSC含量分别为1.87%—4.22%、2.88%—4.28%、2.75%—5.27%,米槠和马尾松凋落叶中NSC含量高于凋落枝,而杉木凋落枝中NSC含量高于凋落叶。不同树种凋落物NSC含量差异显著,米槠和...  相似文献   

6.
Human-induced disturbances and wildfires can transform areas of tropical rainforest into Imperata-dominated grassland, but it may be possible that recovery of biodiversity is facilitated by reforestation with fast-growing trees. We compared the assemblages of braconid wasps as parasitoids of taxonomically diverse groups of insects among Imperata grasslands, young and mature plantations of Acacia mangium, young secondary forests after wildfires, and old secondary forests in the lowland of East Kalimantan. The abundance and species richness of braconids, which had declined in Imperata grasslands, somewhat increased in Acacia plantations, and also the species composition of braconids in Acacia plantations was transitional between Imperata grasslands and old secondary forests. Parasitoids of detritivores and wood borers increased markedly after plantation, while those of herbivores showed a distinct turnover of species all over the range from grasslands to old secondary forests. The plantation of A. mangium had most likely facilitated the recovery of the diversity of host forest and their parasitoids, but the recovery was just at the rudimentary stage even in mature plantations. Monitoring of parasitic wasps would be useful to test the continuous recovery of forest biodiversity in plantation stands.  相似文献   

7.
The humification degree of fresh litter directly controls the accumulation of soil humus derived from plant litter, but very little information on this process is available. Planted forests are well known to restrict soil fertility, which is often indicated by the soil humus level. In this study, fresh litter was collected during different plant phenological stages during 2016 and 2017 in a mixed plantation in Southwest China. The values of hue coefficient ΔlogK (absorbance ratio of 400 nm and 600 nm on a logarithmic scale), optical density E4/E6 (absorbance ratio of 400 nm and 600 nm) and A600/C (absorbance at 600 mm per mg of carbon per ml of extraction) and the concentration of extractable humus carbon (HC) were determined in four litter components (foliar, twigs, reproductive organs and miscellaneous) of the dominant species (Pterocarya stenoptera, Quercus acutissima, Cunninghamia lanceolata and Toxicodendron vernicifluum). All of the litter components exhibited obvious humification characteristics, and showed the highest concentration of extractable HC during the leaf maturation period. The miscellaneous and foliar litters showed greater humification than the other litter types. The components of Pterocarya stenoptera litter exhibited greater degrees of humification than those of the other species, with lower ΔlogK and E4/E6 values and higher A600/C values. The litter from coniferous and evergreen species showed lower humification than that from broad-leaf and deciduous species regardless of the litter component examined. The present results provide new insights into the management of plantations and theoretical data to accurately improve the quality of plantations and maintain soil fertility under a global change.  相似文献   

8.
The carbon (C) and nitrogen (N) status in forest ecosystems can change upon establishment of plantations because different tree species have different nutrient cycling mechanisms. This study was carried out to evaluate C and N status of litterfall, litter decomposition and soil in three adjacent plantations consisting of one deciduous (larch: Larix leptolepis) and two evergreen (red pine: Pinus densiflora; rigitaeda pine: P. rigida × P. taeda) species planted in the same year (1963). Both the pine plantations showed comparatively higher C input from needle litter but significantly lower N concentration and input than the larch plantation (P < 0.05). During the decomposition process, the deciduous larch needle litter showed low C concentration and C remaining in soil, but high N concentration and N remaining in soil compared to the two evergreen pine needle litters. However, the soil C and N concentration and their content at a soil depth of 0–10 cm were not affected significantly (P > 0.05) by the plantation type. These results demonstrate the existence of considerable variation in C and N status resulting from needle litter input and litter decomposition in these three plantations grown at sites with similar environmental conditions.  相似文献   

9.

Purpose

Much tropical land requires rehabilitation but the capacity of reforestation with plantations or naturally regenerating secondary forests for overcoming soil degradation remains unclear. We hypothesised that desirable effects, including improved soil fertility and carbon sequestration, are achieved to a greater extent in Acacia mangium plantations and secondary forests than in Eucalyptus urophylla plantations.

Methods

We tested our hypothesis across soil and climate gradients in Vietnam with linear mixed-effect models and other, comparing A. mangium and E. urophylla plantations, secondary forests and pasture.

Results

A. mangium plantations and secondary forests showed a positive correlation between biomass production and desirable soils properties including increased soil carbon, nitrogen and phosphorus, and reduced bulk density. All plantations, but not secondary forests, caused increases in soil acidity. Eight-year old A. mangium plantations contained most carbon in biomass+soil, and secondary forests and pastures had similar or higher soil carbon. E. urophylla plantations had the lowest soil carbon status, raising doubt about their sequestration capacity in current 6–8 year rotations.

Conclusions

The study demonstrates that appropriate reforestation enhances soil fertility and promotes carbon sequestration on degraded tropical lands and that unmanaged secondary forests are effective at improving soil fertility and sequestering carbon at low cost.  相似文献   

10.
中亚热带次生林和人工林凋落枝水溶性碳氮磷动态特征   总被引:1,自引:0,他引:1  
凋落枝是森林地上部分凋落物的重要组分,揭示其水溶性碳氮磷的动态规律对于认识森林物质循环过程具有重要意义,但目前研究集中于凋落叶,而对凋落枝缺乏必要关注。因此,以中亚热带典型马尾松(Pinus massoniana)人工林、杉木(Cunninghamia lanceolata)人工林和米槠(Castanopsis carlesii)次生林为研究对象,在一个自然年内调查了凋落枝水溶性碳、氮、磷含量及其芳香化指数以及化学计量比的动态变化过程。结果显示:(1)米槠次生林凋落枝水溶性碳、氮、磷含量及芳香化指数明显大于马尾松和杉木人工林;(2)水溶性碳和磷、水溶性碳比磷、水溶性氮比磷和芳香化指数有明显的季节变化;(3)水溶性碳、水溶性磷、水溶性氮比磷和芳香化指数在不同林分和季节间有交互作用。(4)马尾松和杉木人工林、米槠次生林凋落枝水溶性物质含量的季节变化多数与气温和降水呈显著负相关。这些结果表明亚热带次生林可能相对于人工林具有更为高效的以凋落枝为载体的物质循环过程,在未来气候变暖背景下亚热带森林由凋落枝归还给土壤的养分浓度可能降低。  相似文献   

11.

Background and aims

Litter decomposition is a key process controlling flows of energy and nutrients in ecosystems. Altered biodiversity and nutrient availability may affect litter decomposition. However, little is known about the response of litter decomposition to co-occurring changes in species evenness and soil nutrient availability.

Methods

We used a microcosm experiment to evaluate the simultaneous effects of species evenness (two levels), identity of the dominant species (three species) and soil N availability (control and N addition) on litter decomposition in a Mongolian pine (Pinus sylvestris var. mongolica) plantation in Northeast China. Mongolian pine needles and senesced aboveground materials of two dominant understory species (Setaria viridis and Artemisia scoparia) were used for incubation.

Results

Litter evenness, dominant species identity and N addition significantly affected species interaction and litter decomposition. Higher level of species evenness increased the decomposition rate of litter mixtures and decreased the incidence of antagonistic effects. A. scoparia-dominated litter mixtures decomposed faster than P. sylvestris var. mongolica- and S. viridis-dominated litter mixtures. Notably, N addition increased decomposition rate of both single-species litters and litter mixtures, and meanwhile altered the incidence and direction of non-additive effects during decomposition of litter mixtures. The presence of understory species litters stimulated the decomposition rate of pine litters irrespective of N addition, whereas the presence of pine litters suppressed the mass loss of A. scoparia litters. Moreover, N addition weakened the promoting effects of understory species litters on decomposition of pine litters.

Conclusions

Pine litter retarded the decomposition of understory species litters whereas its own decomposition was accelerated in mixtures. Nitrogen addition and understory species evenness altered species interaction through species-specific responses in litter mixtures and thus affected litter decomposition in Mongolian pine forests, which could produce a potential influence on ecosystem C budget and nutrient cycling.  相似文献   

12.
基于长期定位监测数据,量化揭示了红锥纯林(Castanopsis hystrix)、10种与30种乡土树种混交林等3种乡土人工林植物群落的生物量、物种多样性、生物热力学健康水平(eco-exergy)和土壤理化性状在种植后13年内的发展动态,并与尾叶桉(Eucalyptus urophylla)纯林,以及自然恢复系统(灌草坡)进行了比较。结果表明:(1)研究期间,5种恢复模式的植物群落生物量均呈现波动上升趋势,但在发展节率上有所差异。13龄时的尾叶桉纯林与两种乡土树种混交林生物量显著高于其各自1龄时的水平,且显著高于自然恢复灌草坡;相较于其他人工林,红锥纯林生物量增长缓慢,但快于灌草坡;(2)5种恢复模式植物群落的物种多样性(物种丰富度、Shannon-Wiener指数、Pielou均匀度指数)在6至13龄间均呈下降趋势,且30种乡土树种混交林下降趋势最为显著。13龄时,两种混交林Shannon-Wiener指数略高于两种纯林,显著高于灌草坡;10种乡土树种混交林的Pielou均匀度指数略高于红锥纯林与30种乡土树种混交林,显著高于尾叶桉纯林与灌草坡。(3)4种人工林的植物群落生物热力学健康水平皆在6至13龄间显著增加;13龄时两种乡土混交林群落生态显著高于两种纯林,两种纯林显著高于灌草坡,且该差异主要源自于乔木层生态的差异。(4)不同植被恢复模式中,10种乡土树种混交林土壤养分的累积效果最佳,13龄时其土壤总氮含量显著高于红锥纯林和自然恢复灌草坡,但与30种乡土树种混交林和尾叶桉纯林无显著差异。(5)冗余分析结果显示,研究期间植被与土壤间的相关关系逐步建立,土壤理化性状对地上植被结构变化的解释度由1龄时的73.3%逐步上升至13龄时的82.0%,但只有土壤有机碳含量在13龄时与地上植被结构的相关性达到显著水平。上述结果表明,乡土种人工林与外来种人工纯林群落结构、生物热力学健康水平、及植被与土壤间关系的发展规律相似,且相对而言,混交林优于纯林,纯林优于自然恢复灌草坡。植被恢复的起始物种丰富度并不是越高越好;发展到13龄时,10种乡土树种混交林在植被结构与土壤改良方面均优于30种乡土树种混交林。植被与土壤间相关关系的建立是一个长期的过程,不同植被恢复模式对土壤理化性状的差异性影响难以在短期内有所显现。  相似文献   

13.
中国南方3种主要人工林生物量和生产力的动态变化   总被引:2,自引:0,他引:2  
基于中国南方杉木、马尾松、桉树3种主要人工林的幼龄林、中龄林、近熟林、成熟林、过熟林5个不同年龄各3块1000 m2样地(共计45块)的建立和调查,采用样木回归分析法(乔木层)和样方收获法(灌木层、草本层、地上凋落物)获取不同林型不同林龄径级样木和其它基本数据,探讨了3种人工林各组分各层次林分生物量和生产力的分配特征及随林龄的变化规律,结果表明,林分生物量和生产力与林龄密切相关,增长模型的拟合度均较高,相关显著;杉木、马尾松、桉树人工林的生物量随林龄的增长呈增加趋势,成熟林的生物量分别为192.30、191.53、105.77 Mg/hm2,其中活体植物分别占95.76%—98.39%、75.01%—99.14%、85.60%—97.61%;生物量的层次分配乔木层占绝对优势,并随年龄而增加,其它层次所占比例较小,总体趋势为凋落物草本层灌木层;乔木层的器官分配以干所占比例最高,杉木、马尾松、桉树分别占54.89%—75.97%、49.93%—83.10%、51.07%—98.48%,随年龄的增加而增加,根的比例次之,枝叶所占比例较小,随林龄而下降;灌木层器官分配以枝的相对生物量较大,草本层的地上和地下分配规律不明显;与其它森林类型相比,杉木和马尾松的生物量处于中上游水平,桉树的生物量较低,但3种人工林的生产力均很高,分别为12.37、8.98、21.10 Mg hm-2a-1,均是光合效率高、固碳潜力大的中国南方速生丰产优良造林树种。  相似文献   

14.
贾朋  高常军  李吉跃  周平  王丹  许小林 《生态学报》2018,38(19):6903-6911
为探索华南地区尾巨桉人工林和马占相思人工林地表温室气体的季节排放规律、排放通量和主控因子,采用静态箱-气相色谱法,对两种林型地表3种温室气体(CO_2、CH_4、N_2O)通量进行为期1年的逐月测定。结果表明:(1)尾巨桉人工林和马占相思人工林均为CO_2和N_2O的排放源,CH_4的吸收汇。马占相思林地表N_2O通量显著(P0.01)高于尾巨桉林,CO_2通量和CH_4通量无明显差异。(2)两种林型3种温室气体通量有着相似季节变化规律,地表CO_2通量均呈现雨季高旱季低的单峰规律;地表CH_4吸收通量表现为旱季高雨季低的单峰趋势;地表N_2O通量呈现雨季高旱季低且雨季内有两个峰值的排放规律。(3)地表CO_2、N_2O通量和土壤5 cm温度呈极显著(P0.01)正相关,3种温室气体地表通量同土壤含水量呈极显著(P0.01)或显著相关(P0.05)。(4)尾巨桉林和马占相思林温室气体年温室气体排放总量为31.014 t/hm~2和28.782 t/hm~2,均以CO_2排放占绝对优势(98.46%—99.15%),CH_4和N_2O处于次要地位。  相似文献   

15.
受人类活动干扰的增加,亚热带森林频繁转换为次生林和人工林,可能显著影响土壤无脊椎动物群落结构及其生态功能,但当前的认识并不一致。因此,于2022年7月调查了亚热带天然常绿阔叶林转换为次生林、米槠人工林、杉木人工林后土壤无脊椎动物群落结构特征。共捕获土壤无脊椎动物659只,丰度为26540只/m2,隶属1门6纲13目59科,其中蚁科和球角 虫 兆 科为优势类群。森林转换改变了土壤无脊椎动物群落组成和多样性。天然林向米槠人工林和杉木人工林转换后,土壤无脊椎动物丰度和类群均明显降低,其中大型土壤无脊椎动物丰度的响应更为敏感,在2种林型中分别显著降低了33.58%和36.53%。尽管林型转换对土壤无脊椎动物群落多样性指数无显著影响,但改变了土壤无脊椎动物群落组成,其中天然林与杉木人工林群落组成极不相似(J < 0.25),等节 虫 兆 科为杉木人工林优势类群,占比达到59.84%。冗余分析显示,土壤湿度、凋落物现存量和凋落物磷含量是影响土壤无脊椎动物群落的主要因子,对土壤无脊椎动物群落的解释率为69.30%。可见,林型转换可能通过改变土壤理化性质和凋落物质量,调控土壤无脊椎动物群落结构。  相似文献   

16.
为了解桉树人工林土壤种子库特征,对不同林龄尾巨桉(Eucalyptusurophylla×E.grandis)人工林种子库的储量、垂直分布特征及与林下植被的相似度进行了分析。结果表明,土壤活力种子储量最高的为1~2 a生桉林,显著高于其他林型;其次为3~4 a生桉林和马尾松(Pinus massoniana)林;最低的为杉木(Cunninghamia lanceolata)林,显著低于其他林型。随林龄增加,尾巨桉林土壤种子库储量快速下降。土壤种子库中植物种类最为丰富的是杂木林和马尾松林,显著大于其他林型。随林龄增加,尾巨桉林土壤种子库植物种类先增后降。所有林型中,0~5 cm土壤种子库的密度均显著高于5~10 cm土层。杂木林种子库和林下植被共存植物种类最多,其次是马尾松林,杉木林最少。尾巨桉人工林随林龄的增加,共存植物种数呈先升高后下降趋势,土壤种子库Jaccard (CJ)和Sorensens (CS)相似系数也呈先升后降的趋势。因此,在速生桉人工林经营中适当间种(保留)乡土树种,可增加森林生态系统的生物多样性和生态功能的稳定性。  相似文献   

17.
Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.  相似文献   

18.
凋落物所处的土壤微环境是影响其分解的关键因素之一,然而在黄土高原广泛栽植的刺槐人工林中,土壤微环境随林龄增加如何改变、其对凋落物分解过程的影响趋势尚不清楚。为明确上述问题,以油松凋落物(典型的难分解凋落物)和白三叶凋落物(易分解)为对象,分别在林龄为10、20、33 a和43 a的刺槐林地土壤表面进行为期592 d的模拟分解试验,检测凋落物分解特征以及地表土壤理化生物学性质随林龄增加的变化趋势,并分析凋落物分解速率与土壤微环境指标间的关系。结果表明:(1)随林龄增加,油松凋落物的分解速率呈先小幅降低后提高的趋势,白三叶凋落物的分解速率持续提高(P<0.05);(2)总体而言,随林龄增加林地表层土壤温度呈先降后增趋势,土壤湿度、有效磷含量和pH持续降低,而速效氮含量持续提高(P<0.05);(3)林龄增加显著改变了林地土壤微生物群落结构,特别是在各分解时间点时均导致真菌属的明显演替现象。土壤中9种凋落物分解酶的总酶活性和木质纤维素酶活性均在分解第108天时随林龄增加呈先降后增趋势,而在分解第389天和第592天时持续提高(P<0.05)。(4)油松凋落物分解速率仅与土壤总酶活性、真菌群落结构和铵态氮含量呈显著正相关,白三叶凋落物分解速率则与总酶和木质纤维素酶活性、细菌和真菌群落结构、温度和铵态氮含量显著正相关,而与土壤湿度和pH显著负相关(P<0.05)。综上所述,刺槐林龄增加引起的土壤理、化和生物微环境变化总体倾向于加速凋落物的分解过程。  相似文献   

19.
This study was designed to examine saprophytic fungi diversity under different tree species situated in the same ecological context. Further, the link between the diversity and decomposition rate of two broadleaved, two coniferous and two mixed broadleaved-coniferous litter types was targeted. Litter material was decomposed in litter bags for 4 and 24 months to target both early and late stages of the decomposition. Fungal diversity of L and F layers were also investigated as a parallel to the litter bag method. Temperature gradient gel electrophoresis fingerprinting was used to assess fungal diversity in the samples. Mass loss values and organic and nutrient composition of the litter were also measured. The results showed that the species richness was not strongly affected by the change of the tree species. Nevertheless, the community compositions differed within tree species and decomposition stages. The most important shift was found in the mixed litters from the litter bag treatment for both variables. Both mixed litters displayed the highest species richness (13.3 species both) and the most different community composition as compared to pure litters (6.3–10.7 species) after 24 months. The mass loss after 24 months was similar or greater in the mixed litter (70.5% beech–spruce, 76.2% oak–Douglas-fir litter) than in both original pure litter types. This was probably due to higher niche variability and to the synergistic effect of nutrient transfer between litter types. Concerning pure litter, mass loss values were the highest in oak and beech litter (72.8% and 69.8%) compared to spruce and D. fir (59.4% and 66.5%, respectively). That was probably caused by a more favourable microclimate and litter composition in broadleaved than in coniferous plantations. These variables also seemed to be more important to pure litter decomposition rates than were fungal species richness or community structure.  相似文献   

20.
Differences in resource quality between litter species have been postulated to explain why litter-mixtures may decompose at a different rate to that which would be predicted from single species litters (termed 'non-additive effects'). In particular, positive, non-additive effects of litter-mixing on decomposition have been explained by differences in initial nitrogen concentration between litter species. This interpretation is confounded because litter species that differ in nitrogen content also differ by a number of other resource quality attributes. Thus, to investigate whether initial nitrogen concentration does account for positive, non-additive effects of litter-mixing, we mixed grass litters that differed in initial nitrogen concentration but not species or structural plant part identity, and then followed mass loss from the litter-mixes over time. We used the litterbag technique and three grass species for which a gradient of four distinct initial nitrogen concentrations had been generated. We produced all no- to four-mix compositions of litter qualities for each species. Litter from different species was never mixed.
Contrary to what would be predicted, we found that when litters of the same species but with different initial nitrogen concentrations were mixed, that negative, non-additive effects on decomposition were generally observed. In addition, we found that once mixed, increasing litter quality richness from two to four mixtures had no significant, non-additive effect on decomposition. Litter quality composition explained little of the experimental variation when compared to litter quality richness, and different compositions generally behaved in the same manner. Our findings challenge the commonly held assumption that differences in nitrogen concentration between plant species are responsible for positive, non-additive effects of litter-mixing on decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号