共查询到20条相似文献,搜索用时 0 毫秒
1.
Jeannie Hwang Crista Adamson David Butler David R. Janero Alexandros Makriyannis Ben A. Bahr 《Life sciences》2010,86(15-16):615-623
AimsThis review posits that fatty acid amide hydrolase (FAAH) inhibition has therapeutic potential against neuropathological states including traumatic brain injury; Alzheimer's, Huntington's, and Parkinson's diseases; and stroke.Main methodsThis proposition is supported by data from numerous in vitro and in vivo experiments establishing metabolic and pharmacological contexts for the neuroprotective role of the endogenous cannabinoid (“endocannabinoid”) system and selective FAAH inhibitors.Key findingsThe systems biology of endocannabinoid signaling involves two main cannabinoid receptors, the principal endocannabinoid lipid mediators N-arachidonoylethanolamine (“anandamide”) (AEA) and 2-arachidonoyl glycerol (2-AG), related metabolites, and the proteins involved in endocannabinoid biosynthesis, biotransformation, and transit. The endocannabinoid system is capable of activating distinct signaling pathways on-demand in response to pathogenic events or stimuli, thereby enhancing cell survival and promoting tissue repair. Accumulating data suggest that endocannabinoid system modulation at discrete targets is a promising pharmacotherapeutic strategy for treating various medical conditions. In particular, neuronal injury activates cannabinoid signaling in the central nervous system as an intrinsic neuroprotective response. Indirect potentiation of this salutary response through pharmacological inhibition of FAAH, an endocannabinoid-deactivating enzyme, and consequent activation of signaling pathways downstream from cannabinoid receptors have been shown to promote neuronal maintenance and function.SignificanceThis therapeutic modality has the potential to offer site- and event-specific neuroprotection under conditions where endocannabinoids are being produced as part of a physiological protective mechanism. In contrast, direct application of cannabinoid receptor agonists to the central nervous system may activate CB receptors indiscriminately and invite unwanted psychotrophic effects. 相似文献
2.
Production of docosahexaenoic acid by Thraustochytrium aureum 总被引:9,自引:0,他引:9
Pratima Bajpai Pramod K. Bajpai Owen P. Ward 《Applied microbiology and biotechnology》1991,35(6):706-710
Summary
Thraustochytrium aureum ATCC 34 304 contained approximately 50% of total fatty acids as docosahexaenoic acid (DHA). Lipid content of the biomass was dramatically influenced by medium composition and ranged from 0.3 to 16% of the biomass weight. Increasing the culture medium glucose concentration from 5 to 20 g/l caused the lipid content of the biomass to increase from 2.7 to 16.5% and the DHA yield to increase from 26 to 270 mg/l of whole culture broth. The proportion of DHA in lipids was independent of glucose concentration. The fatty acid profile observed in the high-yielding DHA culture was: 16:0, 19.2%; 18:1, 9.8%; 18:2, 2.4%; 20:4, 4.9%; 20:5, 3.6%; 22:6, 48.5% and others, 7.1%. For DHA production, fungal cultures were incubated on an orbital shaker under light at 25° C for 6 days.
Offprint requests to: O. P. Ward 相似文献
3.
LI Qiurong MA Jian TAN Li WANG Chang LI Ning LI Yousheng XU Guowang LI Jieshou 《中国科学C辑(英文版)》2006,49(1):63-72
Recent studies have shown that polyunsaturated fatty acids (PUFA) regulated the functions of membrane receptors in T cells
and suppressed T cell-mediated immune responses. But the molecular mechanisms of immune regulation are not yet elucidated.
Lipid rafts are plasma membrane microdomains, in which many receptors localized. The purpose of this study was to investigate
the effect of DHA on IL-2R signaling pathway in lipid rafts. We isolated lipid rafts by discontinuous sucrose density gradient
ultracentrifugation, and found that DHA could change the composition of lipid rafts and alter the distribution of key molecules
of IL-2R signaling pathway, which transferred from lipid rafts to detergent-soluble membrane fractions. These results revealed
that DHA treatment increased the proportion of polyunsaturated fatty acids especially n−3 polyunsaturated fatty acids in lipid rafts and changed the lipid environment of membrane microdomains in T cells. Compared
with controls, DHA changed the localization of IL-2R, STAT5a and STAT5b in lipid rafts and suppressed the expression of JAK1,
JAK3 and tyrosine phosphotyrosine in soluble membrane fractions. Summarily, this study concluded the effects of DHA on IL-2R
signaling pathway in lipid rafts and explained the regulation of PUFAs in T cell-mediated immune responses. 相似文献
4.
Arachidonic acid induced coronary reactions and their inhibition by docosahexaenoic acid 总被引:2,自引:0,他引:2
J Talesnik 《Canadian journal of physiology and pharmacology》1986,64(1):77-84
The objective of the present study was to further investigate the influence exerted by docosahexaenoic acid (DHA) on the coronary reactions induced in isolated perfused hearts of rats and guinea pigs by bolus doses of arachidonic acid (AA). As in previous studies, we found that AA produced a coronary constriction followed by a longer lasting dilatation. The present data demonstrate that a 5-min infusion of DHA at 0.17-0.68 microM caused a concentration-dependent inhibition of the AA-induced constriction. The vasodilatation determined by AA was also depressed, but only after about 30 min of a sustained DHA infusion. The precursor of AA, linoleic acid (LA), was also infused for about 30 min, and like DHA it inhibited the coronary reactions induced by AA. LA is not converted into AA by the isolated heart, but like DHA, was probably incorporated into the cells of the coronary vascular compartment. It is known that LA, administered "in vivo" to mammals, is converted into AA and increases the production of eicosanoids, whereas DHA does not follow this metabolic pathway. The incorporation of these essential polyunsaturated fatty acids by the isolated perfused heart would inhibit the cyclooxygenase in the coronary vessel walls, interfering with the generation of vasomotor metabolites from AA. We postulate that the systemic administration of DHA, by inhibiting the synthesis of a constrictor metabolite, could be beneficial in reducing the damage due to microvascular constriction in myocardial ischaemia. 相似文献
5.
Hayashi M Yukino T Maruyama I Kido S Kitaoka S 《Bioscience, biotechnology, and biochemistry》2001,65(1):202-204
Tuna oil or its hydrolysate was added to a culture of Chlorella for its nutritional fortification as a feed for rotifer. Exogenous docosahexaenoic acid (DHA) in its free form was taken up by the cells of Chlorella vulgaris strain K-22 and by other strains, but tuna oil was not taken up by the cells. Accumulated DHA was found by electron microscopy in the cells in oil droplets. All strains of Chlorella used in these experiments took up exogenous DHA into the cells. It seems that the structure of the cell wall did not affect the uptake of DHA into the Chlorella cells. 相似文献
6.
Nikolaos Volakakis Thomas Perlmann 《Biochemical and biophysical research communications》2009,390(4):1186-1191
The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPARβ/δ signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPARβ/δ and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels. 相似文献
7.
The essentiality of arachidonic acid and docosahexaenoic acid 总被引:1,自引:1,他引:1
Hau D. Le Jonathan A. Meisel Vincent E. de Meijer Kathleen M. Gura Mark Puder 《Prostaglandins, leukotrienes, and essential fatty acids》2009,81(2-3):165-171
MCF-10A breast epithelial cells treated with docosahexaenoic acid (DHA) or oleic acid (OA) accumulated cytoplasmic lipid droplets containing both triacylglycerol and cholesteryl esters (CE). Interestingly, total CE mass was reduced in cells treated with DHA compared to cells treated with OA, and the CEs were rich in n-3 fatty acids. Thus, we hypothesized that DHA may be, in addition to a substrate, an inhibitor of cholesterol esterification in MCF-10A cells. We determined that the primary isoform of acyl-CoA: cholesterol acyltransferase expressed in MCF-10A cells is ACAT1. We investigated CE formation with DHA, OA, and the combination in intact cells and isolated microsomes. In both cells and microsomes, the rate of CE formation was faster and more CE was formed with OA compared to DHA. DHA substantially reduced CE formation when given in combination with OA. These data suggest for the first time that DHA can act as a substrate for ACAT1. In the manner of a poor substrate, DHA also inhibited the activity of ACAT1, a universally expressed enzyme involved in intracellular cholesterol homeostasis, in a cell type that does not secrete lipids or express ACAT2. 相似文献
8.
Role of RXR in neurite outgrowth induced by docosahexaenoic acid 总被引:2,自引:1,他引:1
We have previously demonstrated that docosahexaenoic acid (DHA) at low micromolar concentrations has a remarkable effect on morphological differentiation of hippocampal neurons by increasing the population of neurons with more branches and longer neurites. In this study, possible involvement of the retinoid X receptor (RXR) in the DHA-induced hippocampal neurite outgrowth was evaluated as DHA is an endogenous ligand for RXR. Immunocytochemical examination revealed that all RXR isoforms, RXR-alpha, -beta(1), -beta(2), and -gamma, are expressed exclusively in neurons with distinctive intracellular distribution. The cell-based dual luciferase reporter assay indicated that DHA activates RXR-alpha at or above 10 microM but not at 1.5 microM where DHA induces neurite outgrowth. Arachidonic acid also activated RXR-alpha in a similar concentration range but with lower efficacy. Our results suggest that DHA-induced neurite outgrowth may not be mediated by direct activation of RXR-alpha, although involvement of other isoforms or DHA metabolites cannot be excluded. 相似文献
9.
T. Yokochi D. Honda T. Higashihara T. Nakahara 《Applied microbiology and biotechnology》1998,49(1):72-76
Culture conditions of Schizochytrium limacinum SR21 for the purpose of microbial docosahexaenoic acid (DHA) production were investigated. The strain SR21 showed a wide
tolerance to salinity; that is, the optimum salinity was between 50% and 200% that of sea water. Monosaccharides (glucose
and fructose) and glycerol supported good cell growth and DHA yield. Di- and polysaccharides, oleic acid, and linseed oil
gave low DHA yields. A high content of DHA (more than 30% of total fatty acids) was obtained from culture on glucose, fructose,
and glycerol, and also the strain had simple polyunsaturated fatty acid profiles. The major polyunsaturated fatty acids other
than DHA were n-6 docosapentaenoic acid only, and the contents of icosapentaenoic acid and arachidonic acid were less than 1%. Using corn
steep liquor as a nitrogen source, a high total fatty acid content was obtained. The total fatty acid content in the dry cell
weight increased as the concentration of the nitrogen source decreased, reached more than 50%. An increase in carbon source
concentration led to a high DHA yield. A maximum DHA yield of more than 4 g/l was obtained in both glucose and glycerol media
at 9% and 12% respectively. S. limacinum SR21 was thought to be a promising resource for microbial DHA production yielding a good level of productivity as well as
a simple polyunsaturated fatty acid profile.
Received: 26 June 1997 / Received revision: 29 August 1997 / Accepted: 19 September 1997 相似文献
10.
Summary When threeThraustochytrium stains were cultivated in liquid media containing 2.5% starch and 0.2% yeast extract, initial pH 6.0, with shaking under fluorescent light for five days at 25°C, similar biomass yields were observed (9.7–10.3 g L–1). Contents of docosahexaenoic acid (DHA) in biomass varied: 0.15, 3.55 and 6.40% w/w forT. striatum ATCC 24473,T. aureum ATCC 34304 andT. roseum ATCC 28210, respectively. In further studies,T. roseum produced a maximum titer of 0.85 g of DHA per liter of culture broth. The DHA content of total lipids ranged from 46–49% w/w. 相似文献
11.
Marcelo Hermes-Lima Roger F. Castilho Valderez G.R. Valle Etelvino J.H. Bechara Anibal E. Vercesi 《生物化学与生物物理学报:疾病的分子基础》1992,1180(2):201-206
Swelling of isolated rat liver mitochondria is shown to be induced by metal-catalyzed 5-aminolevulinic acid (ALA) aerobic oxidation, a putative endogenous source of reactive species (ROS), at concentrations as low as 50–100 μM. In this concentration range, ALA is estimated to occur in the liver of acute intermittent porhyria patients. Removal of Ca2+ (10 μM) from the suspension of isolated rat liver mitochondria by added EGTA abolishes both the ALA-induced transmembrane-potential collapse and mitochondrial swelling. Prevention of the ALA-induced swellling by addition of ruthenium red prior to mitochondrial energization by succinate demonstrates the deleterious involvement of internal Ca2+. Addition of MgCl2 at concentrations higher than 2.5 mM, prevents the ALA-induced mitochondrial swelling, transmembrane potential collapse and Ca2+ efflux. This indicates that Mg2+ protects against the mitochondrial damage promoted by ALA-generated ROS. The ALA-induced mitochondrial damage might be a key event in the liver mitochondrial damage of acute intermittent porphyria patients reported elsewhere. 相似文献
12.
13.
As a normal consequence of aging in men, testosterone levels significantly decline in both serum and brain. Age-related testosterone depletion results in increased risk of dysfunction and disease in androgen-responsive tissues, including brain. Recent evidence indicates that one deleterious effect of age-related testosterone loss in men is increased risk for Alzheimer's disease (AD). We discuss recent findings from our laboratory and others that identify androgen actions implicated in protecting the brain against neurodegenerative diseases and begin to define androgen cell signaling pathways that underlie these protective effects. Specifically, we focus on the roles of androgens as (1) endogenous negative regulators of beta-amyloid accumulation, a key event in AD pathogenesis, and (2) neuroprotective factors that utilize rapid non-genomic signaling to inhibit neuronal apoptosis. Continued elucidation of cell signaling pathways that contribute to protective actions of androgens should facilitate the development of targeted therapeutic strategies to combat AD and other age-related neurodegenerative diseases. 相似文献
14.
Selective acylation of alkyllysophospholipids by docosahexaenoic acid in Ehrlich ascites cells 总被引:1,自引:0,他引:1
Ehrlich ascites cells were cultured with 1-O-[3H]alkylglycero-3-phosphoethanolamine (1-[3H]alkyl-GPE) or 1-O-[3H]alkylglycero-3-phosphocholine (1-[3H]alkyl-GPC) to reveal the selective retention of polyunsaturated fatty acids at second position of ether-containing phospholipids. Although small percentages of the lysophospholipids were degraded into long-chain alcohol, both alkyllyso-GPE and -GPC were acylated at the rate of approximately 2 nmol/30 min per 10(7) cells. Alkylacylacetylglycerols were prepared from the acylated products by phospholipase C treatment, acetylation and TLC, and fractionated according to the degree of unsaturation by AgNO3-TLC. The distribution of the radioactivity among the subfractions indicated that both alkyllysophospholipids were mainly esterified by docosahexaenoic acid and to a somewhat lesser extent by arachidonic acid. The selectivity for docosahexaenoic acid in the esterification of 1-alkyl-GPE was much stronger than in that of 1-alkyl-GPC. Although acyl-CoA: 1-alkyl-glycerophosphoethanolamine acyltransferase activity of Ehrlich cell microsomes with arachidonoyl-CoA and docosahexaenoyl-CoA as acyl donors was negligible compared with the acyl-CoA:1-alkyl-glycerophosphocholine acyltransferase activity, a significant amount of 1-alkyl-GPE was acylated in the microsomes without exogenously added acyl-CoA. HPLC analysis revealed that docosahexaenoic acid and arachidonic acid were mainly esterified by the microsomal transferase. Acylation of 1-alkyl-GPC with docosahexaenoic acid and arachidonic acid was also observed in the absence of added acyl-CoA, but the activity was lower than that for 1-alkyl-GPE. Although the source of the acyl donor in the acylation has not been determined, the acylation is probably due to the direct transfer of acyl groups between intact phospholipids. The above results provided the first evidence that the lysophospholipid acyltransferase system including the transacylase activity participates in the selective retention of docosahexaenoic acid in intact cells and a cell free system. 相似文献
15.
16.
Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells. 总被引:13,自引:0,他引:13
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression. 相似文献
17.
Yoshii H Furuta T Siga H Moriyama S Baba T Maruyama K Misawa Y Hata N Linko P 《Bioscience, biotechnology, and biochemistry》2002,66(4):749-753
The application of omega-3 polyunsaturated fatty acids (PUFAs) as food additives is restricted by their chemically quite reactive properties. However, quantitative analyses of the oxidative kinetics of PUFAs are very few compared to other studies on food chemistry. In this study, the autoxidation kinetics of ethyl docosahexaenoate (DHAEE), docosahexaenoic triglyceride (DHA oil), and emulsified DHA oil were investigated with an oxygen sensor. The autocatalytic reaction rate constants for DHAEE, DHA oil, and the emulsified DHA oil with 20% (w/v) GA, 20% SSPS, or 20% SSPS containing 5% soy protein were obtained at 35, 50, and 70 degrees C. A plot of the natural logarithm of the frequency factor, In ka0, vs. the activation energy, Ea, demonstrated that In ka0 against Ea fitted well with a single straight line both for the data from this study and for other reported results. This implies that the chemical compensation relationship holds between ka0 and Ea for PUFA and emulsified DHA oil. 相似文献
18.
Retroconversion of docosahexaenoic acid in the rat 总被引:7,自引:0,他引:7
19.
In vertebrates, Notch signaling is generally thought to inhibit neural differentiation. However, whether Notch can also promote specific early cell fates in this context is unknown. We introduced activated Notch1 (NIC) into the mouse forebrain, before the onset of neurogenesis, using a retroviral vector and ultrasound imaging. During embryogenesis, NIC-infected cells became radial glia, the first specialized cell type evident in the forebrain. Thus, rather than simply inhibiting differentiation, Notch1 signaling promoted the acquisition of an early cellular phenotype. Postnatally, many NIC-infected cells became periventricular astrocytes, cells previously shown to be neural stem cells in the adult. These results suggest that Notch1 promotes radial glial identity during embryogenesis, and that radial glia may be lineally related to stem cells in the adult nervous system. 相似文献
20.
Tyrosine phosphorylated Par3 regulates epithelial tight junction assembly promoted by EGFR signaling
Wang Y Du D Fang L Yang G Zhang C Zeng R Ullrich A Lottspeich F Chen Z 《The EMBO journal》2006,25(21):5058-5070
The conserved polarity complex, comprising the partitioning-defective (Par) proteins Par3 and Par6, and the atypical protein kinase C, functions in various cell-polarization events and asymmetric cell divisions. However, little is known about whether and how external stimuli-induced signals may regulate Par3 function in epithelial cell polarity. Here, we found that Par3 was tyrosine phosphorylated through phosphoproteomic profiling of pervanadate-induced phosphotyrosine proteins. We also demonstrated that the tyrosine phosphorylation event induced by multiple growth factors including epidermal growth factor (EGF) was dependent on activation of Src family kinase (SFK) members c-Src and c-Yes. The tyrosine residue 1127 (Y1127) of Par3 was identified as the major EGF-induced phosphorylation site. Moreover, we found that Y1127 phosphorylation reduced the association of Par3 with LIM kinase 2 (LIMK2), thus enabling LIMK2 to regulate cofilin phosphorylation dynamics. Substitution of Y1127 for phenylalanine impaired the EGF-induced Par3 and LIMK2 dissociation and delayed epithelial tight junction (TJ) assembly considerably. Collectively, these data suggest a novel, phosphotyrosine-dependent fine-tuning mechanism of Par3 in epithelial TJ assembly controlled by the EGF receptor-SFK signaling pathway. 相似文献