首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nuclear receptors are involved in regulating the expression of cholesterol 7alpha-hydroxylase (CYP7A1), however, their roles in the up-regulation of CYP7A1 by cholestyramine (CSR) are still unclear. In the present study, male Wistar rats were divided into four groups and fed [high sucrose + 10% lard diet] (H), [H + 3% CSR diet] (H + CSR), [H + 0.5% cholesterol + 0.25% sodium cholate diet] (C), or [C + 3% CSR diet] (C + CSR) for 2 weeks. Cholestyramine decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but had no effect on these parameters in rats fed H-based diets. Cholestyramine raised hepatic levels of CYP7A1 mRNA and activity in both groups. The gene expression of hepatic ATP-binding cassettes A1 and G5, regulated by liver X receptor (LXR), were unchanged and down-regulated by cholestyramine, respectively. The mRNA levels of the hepatic ATP-binding cassette B11 and short heterodimer partner (SHP), regulated by farnesoid X receptor (FXR), were not changed by cholestyramine. C-based diets, which contained cholesterol and cholic acid, increased SHP mRNA levels compared to H-based diets. Consequently, in rats fed the C+CSR diet, hepatic FXR was activated by dietary bile acids, but the hepatic CYP7A1 mRNA level was increased 16-fold compared to that in rats fed an H diet. These results suggest that cholestyramine up-regulates the expression of CYP7A1 independently via LXR- or FXR-mediated pathways in rats.  相似文献   

3.
Cao Y  Bei W  Hu Y  Cao L  Huang L  Wang L  Luo D  Chen Y  Yao X  He W  Liu X  Guo J 《Phytomedicine》2012,19(8-9):686-692
This study is to investigate the cholesterol-lowering effect and the new mode of action of coptis alkaloids on high lipid diet-induced hyperlipidemic rats. Coptis alkaloids extract (CAE) was prepared by alcohol extraction from Rhizoma Coptidis that have been quality-controlled according to the protocol. The cholesterol-lowering effect of CAE was evaluated on SD rats fed with high-lipid diet. Serum level of lipid, Bile acid and cholesterol in the liver and feces of the rats were measured using colorimetric assay kit. RT-PCR and Western blot were used to analyze the mRNA and protein expression of cholesterol metabolism-related genes including cholesterol 7α-hydroxylase (CYP7A1), peroxisome proliferator-activated receptor-alpha (PPARα) and farnesoid X receptor (FXR) in the livers of the rats. A HPLC analysis was used to assess the activity of CYP7A1. The results showed that CAE reduced the levels of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C). CYP7A1 gene expression and its activity was up-regulated dose-dependently accompanying with the increased level of bile acid and the reduced cholesterol level in the livers of the CAE treated hyperlipidemic rats. Meanwhile, the mRNA expression of PPARα was also up-regulated in dose-dependent way accompanying the down-modulation of the FXR mRNA expression in the livers of the CAE treated hyperlipidemic rats. The results indicate that the cholesterol-lowering effect of coptis alkaloid extract is at least partly attributed to its promoting the cholesterol conversion into bile acids by up-regulating the gene expression of CYP7A1 and thus increasing its activity in the liver of the hyperlipidemic rats, which might related to the positive regulation of PPARα and the negative modulation of FXR.  相似文献   

4.
Hypercholesterolemia is found in patients with hypothyroidism and resistance to thyroid hormone. In this study, we examined cholesterol metabolism in a thyroid hormone receptor beta (TR-beta) mutant mouse model of resistance to thyroid hormone. Whereas studies of cholesterol metabolism have been reported in TR-beta knock-out mice, generalized expression of a non-ligand binding TR-beta protein in this knock-in model more fully recapitulates the hypothyroid state, because the hypothyroid effect of TRs is mediated by the unliganded receptor. In the hypothyroid state, a high cholesterol diet increased serum cholesterol levels in wild-type animals (WT) but either did not change or reduced levels in mutant (MUT) mice relative to hypothyroidism alone. 7alpha-Hydroxylase (CYP7A1) is the rate-limiting enzyme in cholesterol metabolism and mRNA levels were undetectable in the hypothyroid state in all animals. triiodothyronine replacement restored CYP7A1 mRNA levels in WT mice but had minimal effect in MUT mice. In contrast, a high cholesterol diet markedly induced CYP7A1 levels in MUT but not WT mice in the hypothyroid state. Elevation of CYP7A1 mRNA levels and reduced hepatic cholesterol content in MUT animals are likely because of cross-talk between TR-beta and liver X receptor alpha (LXR-alpha), which both bind to a direct repeat + 4 (DR+4) element in the CYP7A1 promoter. In transfection studies, WT but not MUT TR-beta antagonized induction of this promoter by LXR-alpha. Electromobility shift analysis revealed that LXR/RXR heterodimers bound to the DR+4 element in the presence of MUT but not WT TR-beta. A mechanism for cross-talk, and potential antagonism, between TR-beta and LXR-alpha is proposed.  相似文献   

5.
Cholesterol 7α-hydroxylase (CYP7A1) encodes for the rate-limiting step in the conversion of cholesterol to bile acids in the liver. In response to acute cholesterol feeding, mice upregulate CYP7A1 via stimulation of the liver X receptor (LXR) α. However, the effect of a chronic high-cholesterol diet on hepatic CYP7A1 expression in mice is unknown. We demonstrate that chronic cholesterol feeding (0.2% or 1.25% w/w cholesterol for 12 weeks) in FVB/NJ mice results in a >60% suppression of hepatic CYP7A1 expression associated with a >2-fold increase in hepatic cholesterol content. In contrast, acute cholesterol feeding induces a >3-fold upregulation of hepatic CYP7A1 expression. We show that chronic, but not acute, cholesterol feeding increases the expression of hepatic inflammatory cytokines, tumor necrosis factor (TNF)α, and interleukin (IL)-1β, which are known to suppress hepatic CYP7A1 expression. Chronic cholesterol feeding also results in activation of the mitogen activated protein (MAP) kinases, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Furthermore, we demonstrate in vitro that suppression of CYP7A1 by TNFα and IL-1β is dependent on JNK and ERK signaling. We conclude that chronic high-cholesterol feeding suppresses CYP7A1 expression in mice. We propose that chronic cholesterol feeding induces inflammatory cytokine activation and liver damage, which leads to suppression of CYP7A1 via activation of JNK and ERK signaling pathways.  相似文献   

6.
7.
As previously reported by us, mice with targeted disruption of the CYP8B1 gene (CYP8B1-/-) fail to produce cholic acid (CA), upregulate their bile acid synthesis, reduce the absorption of dietary cholesterol and, after cholesterol feeding, accumulate less liver cholesterol than wild-type (CYP8B1+/+) mice. In the present study, cholesterol-enriched diet (0.5%) or administration of a synthetic liver X receptor (LXR) agonist strongly upregulated CYP7A1 expression in CYP8B1-/- mice, compared to CYP8B1+/+ mice. Cholesterol-fed CYP8B1-/- mice also showed a significant rise in HDL cholesterol and increased levels of liver ABCA1 mRNA. A combined CA (0.25%)/cholesterol (0.5%) diet enhanced absorption of intestinal cholesterol in both groups of mice, increased their liver cholesterol content, and reduced their expression of CYP7A1 mRNA. The ABCG5/G8 liver mRNA was increased in both groups of mice, but cholesterol crystals were only observed in bile from the CYP8B1+/+ mice. The results demonstrate the cholesterol-sparing effects of CA: enhanced absorption and reduced conversion into bile acids. Farnesoid X receptor (FXR)-mediated suppression of CYP7A1 in mice seems to be a predominant mechanism for regulation of bile acid synthesis under normal conditions and, as confirmed, able to override LXR-mediated mechanisms. Interaction between FXR- and LXR-mediated stimuli might also regulate expression of liver ABCG5/G8.  相似文献   

8.
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation.  相似文献   

9.
Chlorella powder (CP) has a hypocholesterolemic effect and high bile acid-binding capacity; however, its effects on hepatic cholesterol metabolism are still unclear. In the present study, male Wistar rats were divided into four groups and fed a high sucrose + 10% lard diet (H), an H + 10% CP diet (H+CP), an H + 0.5% cholesterol + 0.25% sodium cholate diet (C), or a C + 10% CP diet (C+CP) for 2 weeks. CP decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but did not affect these parameters in rats fed H-based diets. CP increased the hepatic mRNA level and activity of cholesterol 7α-hydroxylase (CYP7A1). CP increased hepatic HMG-CoA reductase (HMGR) activity in the rats fed H-based diets, but not in rats fed C-based diets. CP did not affect hepatic mRNA levels of sterol 27-hydroxylase, HMGR, low-density lipoprotein (LDL) receptor, scavenger receptor class B1, ATP-binding cassette (ABC) A1, ABCG5, or ABCB11. Furthermore, the effect of a 3.08% Chlorella indigestible fraction (CIF, corresponding to 10% CP) on hepatic cholesterol metabolism was determined using the same animal models. CIF also decreased serum and liver cholesterol levels significantly in rats fed C-based diets. CIF increased hepatic CYP7A1 mRNA levels. These results suggest that the hypocholesterolemic effect of CP involves enhancement of cholesterol catabolism through up-regulation of hepatic CYP7A1 expression and that CIF contributes to the hypocholesterolemic effect.  相似文献   

10.
The activation of nuclear receptors, peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha (LXRα), has been shown to inhibit the growth of prostate cancer cells. This study examined whether the anti-proliferative effect of lycopene on androgen-dependent human prostate cancer (LNCaP) cells involves the up-regulation of the expression of PPARγ and LXRα. As expected, lycopene treatment (2.5-10 μM) significantly inhibited the proliferation of LNCaP cells during incubation for 96 h. Lycopene significantly increased the protein and mRNA expression of PPARγ and LXRα at 24 and 48 h, while the increased in the expression of ATP-binding cassette transporter 1 (ABCA1) was only evident 96 h. In addition, lycopene significantly decreased cellular total cholesterol levels and increased apoA1 protein expression at 96 h. Incubation of LNCaP cells with lycopene (10 μM) in the presence (20 μM) of a specific antagonist of PPARγ (GW9662) and LXRα (GGPP) restored the proliferation of LNCaP cells to the control levels and significantly suppressed protein expression of PPARγ and LXRα as well as increased cellular total cholesterol levels. LXRα knockdown by siRNA against LXRα significantly enhanced the proliferation of LNCaP cells, whereas si-LXRα knockdown followed by incubation with lycopene (10 μM) restored the proliferation to the control level. The present study is the first to demonstrate that the anti-proliferative effect of lycopene on LNCaP cells involves the activation of the PPARγ-LXRα-ABCA1 pathway, leading to reduced cellular total cholesterol levels.  相似文献   

11.
The two oxysterols, 27-hydroxycholesterol (27OH) and 24S-hydroxycholesterol (24OH), are both inhibitors of cholesterol synthesis and activators of the liver X receptor (LXR) in vitro. Their role as physiological regulators under in vivo conditions is controversial, however. In the present work, we utilized a previously described mouse model with overexpressed human sterol 27-hydroxylase (CYP27A1). The levels of 27OH were increased about 12-fold in the brain. The brain levels of HMG-CoA reductase mRNA and HMG-CoA synthase mRNA levels were increased. In accordance with increased cholesterol synthesis, most of the cholesterol precursors were also increased. The level of 24OH, the dominating oxysterol in the brain, was decreased by about 25%, most probably due to increased metabolism by CYP27A1. The LXR target genes were unaffected or slightly changed in a direction opposite to that expected for LXR activation. In the brain of Cyp27−/− mice, cholesterol synthesis was slightly increased, with increased levels of cholesterol precursors but normal mRNA levels of HMG-CoA reductase and HMG-CoA synthase. The mRNA levels corresponding to LXR target genes were not affected. The results are consistent with the possibility that both 24OH and 27OH are physiological suppressors of cholesterol synthesis in the brain. The results do not support the contention that 27OH is a general activator of LXR target genes in this organ.  相似文献   

12.
In our previous study, we demonstrated that lycopene can inhibit the proliferation of androgen-dependent prostate LNCaP cancer cells through the activation of the peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor alpha (LXRα)-ATP-binding cassette transporter 1 (ABCA1) pathway. However, it is still unclear whether lycopene possesses similar effects in androgen-independent prostate cancer cells DU145 and PC-3. As lycopene inhibited the proliferation of both cell types to a similar extent, we chose DU145 cells for most of the subsequent studies. We show that lycopene significantly increased protein and mRNA expression of PPARγ, LXRα and ABCA1 and cholesterol efflux (i.e., decreased cellular cholesterol and increased cholesterol in culture medium). Lycopene (10 μM) in the presence of a specific antagonist of PPARγ (GW9662) or of LXRα (GGPP) restored the proliferation of DU145 cells and significantly suppressed lycopene-induced protein and mRNA expression of PPARγ and LXRα and cholesterol efflux. Liver X receptor α knockdown by siRNA against LXRα significantly promoted the proliferation of DU145 cells, whereas si-LXRα knockdown followed by incubation with lycopene (10 μM) restored the proliferation to the control level. Furthermore, lycopene in combination with the LXRα agonist T0901317 exhibited synergistic effects on cell proliferation and protein expression of PPARγ, LXRα and ABCA1. These results demonstrate that lycopene can inhibit DU145 cell proliferation via PPARγ-LXRα-ABCA1 pathway and that lycopene and T0901317 exhibit synergistic effects.  相似文献   

13.
We investigated how cholesterol feeding regulates cholesterol 7alpha-hydroxylase (CYP7A1) via the nuclear receptors farnesoid X receptor (FXR) and liver X receptor alpha (LXRalpha) in New Zealand white rabbits. After 1 day of 2% cholesterol feeding, when the bile acid pool size had not expanded, mRNA levels of the FXR target genes short-heterodimer partner (SHP) and sterol 12alpha-hydroxylase (CYP8B) were unchanged, indicating that FXR activation remained constant. In contrast, the mRNA levels of the LXRalpha target genes ATP binding cassette transporter A1 (ABCA1) and cholesteryl ester transfer protein (CETP) increased 5-fold and 2.3-fold, respectively, associated with significant increases in hepatic concentrations of oxysterols. Activity and mRNA levels of CYP7A1 increased 2.4 times and 2.2 times, respectively. After 10 days of cholesterol feeding, the bile acid pool size increased nearly 2-fold. SHP mRNA levels increased 4.1-fold while CYP8B declined 64%. ABCA1 mRNA rose 8-fold and CETP mRNA remained elevated. Activity and mRNA of CYP7A1 decreased 60% and 90%, respectively. Feeding cholesterol for 1 day did not enlarge the ligand pool size or change FXR activation, while LXRalpha was activated highly secondary to increased hepatic oxysterols. As a result, CYP7A1 was up-regulated. After 10 days of cholesterol feeding, the bile acid (FXR ligand) pool size increased, which activated FXR and inhibited CYP7A1 despite continued activation of LXRalpha. Thus, in rabbits, when FXR and LXRalpha are activated simultaneously, the inhibitory effect of FXR overrides the stimulatory effect of LXRalpha to suppress CYP7A1 mRNA expression.  相似文献   

14.
15.
Chlorella powder (CP) has a hypocholesterolemic effect and high bile acid-binding capacity; however, its effects on hepatic cholesterol metabolism are still unclear. In the present study, male Wistar rats were divided into four groups and fed a high sucrose + 10% lard diet (H), an H + 10% CP diet (H+CP), an H + 0.5% cholesterol + 0.25% sodium cholate diet (C), or a C + 10% CP diet (C+CP) for 2 weeks. CP decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but did not affect these parameters in rats fed H-based diets. CP increased the hepatic mRNA level and activity of cholesterol 7alpha-hydroxylase (CYP7A1). CP increased hepatic HMG-CoA reductase (HMGR) activity in the rats fed H-based diets, but not in rats fed C-based diets. CP did not affect hepatic mRNA levels of sterol 27-hydroxylase, HMGR, low-density lipoprotein (LDL) receptor, scavenger receptor class B1, ATP-binding cassette (ABC) A1, ABCG5, or ABCB11. Furthermore, the effect of a 3.08% Chlorella indigestible fraction (CIF, corresponding to 10% CP) on hepatic cholesterol metabolism was determined using the same animal models. CIF also decreased serum and liver cholesterol levels significantly in rats fed C-based diets. CIF increased hepatic CYP7A1 mRNA levels. These results suggest that the hypocholesterolemic effect of CP involves enhancement of cholesterol catabolism through up-regulation of hepatic CYP7A1 expression and that CIF contributes to the hypocholesterolemic effect.  相似文献   

16.
Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear receptors LXRα (-24%), RXR (-32%), HNF4α (-21%) when compared to unexposed ones. These modifications on cholesterol metabolism did not lead to increased disturbances that are specific for apolipoprotein E-deficient mice, suggesting that chronic DU exposure did not worsen the pathology in this experimental model. In conclusion, the results of this study indicate that even for a sensitive pathologic model the exposure to a low dose of DU has no relevant impact. The results confirm the results of our first study carried out on healthy laboratory rodents where a sub-chronic contamination with low dose DU did not affect in vivo the metabolism of cholesterol.  相似文献   

17.
18.
To investigate changes in bile acid biosynthesis in chicken (Gallus gallus) during embryonic stages, we studied the contribution of hepatic and plasma total bile acid levels, mRNA expression of cholesterol 7 alpha-hydroxylase (CYP7A1), and the expression of its regulatory genes in two embryo models (i.e., broilers and layers) differing in lipid metabolism. Total bile acid levels in plasma and liver were low during embryonic stages, as well as expression of CYP7A1. At hatch (P0), hepatic and plasma total bile acid levels and CYP7A1 mRNA expression in liver were markedly increased in both models. The hepatic mRNA expression of liver X receptor (LXR)alpha, a regulator of CYP7A1 gene expression gradually decreased with developmental stages of both broilers and layers. The hepatic mRNA expression of farnesoid X receptor (FXR), a repressor of CYP7A1 gene expression, also decreased with embryonic development. The present results showed that the mRNA expression of CYP7A1 and synthesis of bile acids was low in embryonic stages, suggesting that FXR might be a key regulator of CYP7A1 gene expression in the chicken embryo.  相似文献   

19.
20.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号