首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
岷江上游植被冠层降水截留的空间模拟   总被引:10,自引:1,他引:9       下载免费PDF全文
 通过对岷江上游实地踏查和定位观测研究,结合MODIS遥感数据,利用“3S”技术对岷江上游植被冠层降水截留进行了空间模拟。研究结果表明:岷江上游植被叶面积指数(LAI)与增强性植被指数(EVI)以二项式关系拟合效果较好。由于归一化植被指数(NDVI)存在的饱和问题,研究采用EVI反演LAI,统计结果表明:岷江上游LAI值在0~2之间的占28.57%,在2~4.5之间的占63.06%,大于4.5的占8.37%,其中LAI最大值为7.394;从冠层最大降水截留模拟结果来看: 植被较好的地区,如卧龙、米亚罗的植被冠层最大降水截留量较大,而干旱河谷、上游高山草甸等地的植被冠层最大降水截留量相对较低;附加冠层降水截留与降雨量呈线性相关,模型验证时以此为基础,模型模拟的结果较为理想。  相似文献   

2.
祁连山青海云杉林冠生态水文效应及其影响因素   总被引:5,自引:0,他引:5  
以位于祁连山中段大野口关滩森林站的青海云杉林为研究对象,利用2008年观测期间(6月12日至10月8日)34场降雨的大气降雨量、穿透雨量和树干茎流量观测资料,对青海云杉林的降雨再分配特征及其影响因素进行综合分析。结果表明:青海云杉林的总穿透雨量、截留量和干流量分别为212.6、64.5 mm和3.4 mm,分别占大气降雨量的75.8%、23.0%和1.2%;穿透雨在林内具有较大的空间变异性,其变异程度随降雨量的增大而减小,叶面积指数和冠层郁闭度在一定程度上也影响穿透雨的空间分布,且降雨量越小其影响效果越明显;青海云杉林的总干流量为3.4 mm,平均干流率为0.58%,雨前林冠的湿润程度对树干流的产生有很大影响,导致当降雨量为5.6 mm时就开始产生树干茎流;青海云杉林冠截留率的大小主要取决于降雨量,且随着降雨量的增大先减小并逐渐趋于稳定,林冠截留量总体上随冠层郁闭度和叶面积指数的增大而增大,但当观测点位于树冠边缘或多个树冠重叠处时出现负截留现象。所以,就特定林分而言,冠层结构特征对于其林冠生态水文效应起着重要的作用。  相似文献   

3.
在半湿润地区,创新节水型城市绿地建设模式,实现绿地由耗水型向节水型转变,是学术界关注的热点问题。通过模拟降雨的方法,对半湿润地区城市绿地中的金叶女贞、大叶黄杨、小叶黄杨、红叶石楠、龙柏和侧柏等6种灌木的截留集水功能及其影响因素进行研究。结果表明: 冠层截留和茎流集水是水文过程的两个不同阶段,常绿灌木冠层截留大,但其茎流集水差;随着雨强增大,所有灌木的穿透雨率和茎流率都明显增加,但截留率却相对减少;穿透雨率表现为阔叶灌木显著大于针叶灌木,茎流率趋势与之相同,而截留率则相反。冠层投影中心区域穿透雨率最小,随着与冠层投影中心距离的加大,叶面积指数降低,穿透雨率也呈逐步减少趋势;当雨强为小雨时,冠层投影中心的穿透雨率小,即截留率和茎流率大,当雨强为大雨时,冠层投影中心的穿透雨率大,即截留率和茎流率小;随着雨强增大,冠层外围穿透雨率增大,漏斗形截留集水系统呈缩小趋势。雨强和叶面积指数是显著影响灌木截留集水功能的重要因素;半湿润地区城市绿地在林下配置阔叶灌木更有利于截留集水。  相似文献   

4.
华北落叶松人工林蒸散及产流对叶面积指数变化的响应   总被引:2,自引:0,他引:2  
定量评价林地蒸散和产流等水文过程对冠层叶面积指数(LAI)的响应,对于深入认识森林植被的生态水文过程及其发生机制,实现半干旱区林水综合管理和区域可持续发展是非常必要的。应用集总式生态水文模型BROOK90,模拟分析了不同降水年型(丰水年、平水年、枯水年)下,位于半干旱区的宁夏六盘山叠叠沟小流域内华北落叶松(Larix principis-rupprechtii)人工林的水文过程对冠层LAI变化的响应关系。结果发现:林分总蒸散量、冠层截留量、蒸腾量与LAI都呈显著的正相关关系(R~20.99,P0.01),而土壤蒸发量、产流量则与LAI均呈显著的负相关关系(R~20.99,P0.01);在不同的降水年型下,各水文过程变量与LAI的关系都可以很好地用指数函数来表达,且都存在着一个LAI阈值。当LAI低于阈值时,各水文过程变量随LAI的变化幅度较大;但高于阈值时,各变量的变化十分缓慢并趋于稳定。在不同降水年型下,各变量LAI阈值之间存在着一定的差异。一般地,丰水年各变量的LAI阈值要大于枯水年,尤其是冠层截留和土壤蒸发。在丰水年,各水文过程变量随LAI增加而变化的速率要比在平水年、枯水年更快,说明在水分充足年份中各变量的波动更多取决于LAI变化,而在水分亏缺的年份中则可能更多地受到水分条件的限制。模拟结果表明,通过减少冠层LAI(如间伐)导致的林分的降低蒸散耗水和增加产流的作用是有限的,这是由于林分蒸散降低的幅度要比LAI降低的幅度小。例如,在平水年,当LAI从4.2变为2.0(减少幅度52.4%)时,林分年蒸散仅从357.2 mm减少至333.9 mm(减少幅度6.5%)。  相似文献   

5.
评价植被冠层降雨截留能力,是生态系统水循环的重要研究内容。以广东省中小流域为例,结合地面监测站点的降雨量数据和MODIS叶面积指数遥感数据,利用植被冠层降雨截留模型,定量模拟和分析了广东省流域尺度2004-2016年的地表植被冠层降雨截留能力及其时空变化特征。结果表明:(1)2004-2012年广东省年均植被冠层降雨截留率持续下降,2016年略有上升,并且随着时间的推移,流域之间的植被冠层降雨截留率差异越来越小。(2)广东省植被冠层降雨截留能力呈现山区东西两翼高,山区中部以及沿海地区低的显著空间差异格局,这种空间格局与植被覆盖LAI主要呈现由珠三角向外围递增的圈层空间格局特征密切相关,而与由南向北逐渐递减的降雨空间格局特征相关性不大。(3)森林覆盖对流域植被冠层降雨截留能力有着一定的影响,其中流域内阔叶林占森林面积的比例对这种影响的程度起着最为关键的作用。  相似文献   

6.
不同放牧制度下呼伦湖流域草原植被冠层截留   总被引:5,自引:0,他引:5  
冠层截留是降雨过程中的水量分配和流域水平衡的一个重要组成部分,通过水浸泡法和降雨模拟实验研究呼伦湖流域草原3种放牧制度下(休牧、轮牧、自由放牧(超载放牧))植被冠层截留量的变化规律,并利用遥感解译植被归一化指数(NDVI),确定3种放牧制度下草原面积,估算呼伦湖流域草原降雨截留量。研究表明:在休牧、轮牧、自由放牧3种制度下,水浸泡法测定的截留量分别是0.468、0.320、0.271 mm。降雨模拟实验法测得的结果分别是0.957、0.613、0.431 mm。休牧、轮牧、自由放牧草场叶面积指数、盖度、容重、生物量等指标差异显著(P0.05),且单株植被高度、鲜重对截留量影响显著呈线性正相关关系。呼伦湖流域草原一次降雨量为大于等于30 mm全流域降雨,其植被截留量为6.462×106m3。  相似文献   

7.
模拟降雨条件下玉米植株对降雨再分配过程的影响   总被引:5,自引:0,他引:5  
马波  李占斌  马璠  吴发启 《生态学报》2015,35(2):497-507
为系统测定玉米(Zea mays)不同生长阶段的穿透雨、茎秆流和冠层截留,采用室内模拟降雨法测定了不同降雨强度、不同叶面积指数玉米冠下穿透雨和茎秆流,采用喷雾法测定了玉米不同生长阶段的冠层截留。对其进行了量化分析,并探讨了三者与玉米叶面积指数和降雨强度的关系,阐明了玉米冠下穿透雨的空间分布特征。结果表明:玉米冠下穿透雨量占冠上总降雨量比例为30.97%—94.02%,平均为63.92%;茎秆流量占降雨量比例的变化范围为5.68%—75.70%,平均为35.28%;冠层截留量在其全生育期内变化范围为0.02—0.43 mm,平均为0.16 mm,所占总降雨量比例最大仅为1%。随玉米生长,穿透雨量逐渐降低,茎秆流量和冠层截留量逐渐增加。穿透雨与茎秆流呈现此消彼长的关系,其中穿透雨率平均由93.55%降至36.23%;茎秆流率平均由5.98%增加至70.42%。降雨强度与穿透雨量和茎秆流量呈正相关关系,但是二者占总降雨量的比例与降雨强度关系不显著(P0.05)。随着玉米生长,穿透雨冠下空间分布由均匀逐渐趋向于不均匀,使降雨经过冠层后趋于向行中汇集,但在玉米生长后期,集中于行中的穿透雨量也因叶片衰败而随之降低。揭示了玉米对降雨的再分配作用特征,可为农田水分有效利用、农田生态水文过程机理和坡耕地土壤侵蚀防治提供理论依据。  相似文献   

8.
Canopy structure in savannas along a moisture gradient on Kalahari sands   总被引:3,自引:0,他引:3  
Measurements of tree canopy architecture were made at six savanna sites on deep, sandy soils, along a gradient of increasing aridity. There was substantial variation in the leaf area estimated within each site, using the same sample frame, but different measurement techniques. The trends in canopy properties in relation to the aridity gradient were consistent, regardless of the technique used for estimating the properties. The effective plant area index for the tree canopy (the sum of the stem area index and the leaf area index (LAI)) declined from around 2 to around 0.8 m2 m?2 over a gradient of mean annual rainfall from 1000 to 350 mm. Stems contributed 2–5% of the tree canopy plant area index. Since the tree canopy cover decreased from 50% to 20% over this aridity range, the leaf area index within the area covered by tree canopies remained fairly constant at 3–4 m2 m?2. Tree leaves tended from a horizontal orientation to a more random orientation as the aridity increased. On the same gradient, the leaf minor axis dimension decreased from around 30 mm to around 3 mm, and the mean specific leaf area decreased from 14 to 5 m2 kgha?1. There was good agreement between LAI observed in the field using a line ceptometer and the LAI inferred by the MODIS sensor on the Terra satellite platform, 2 months later in the same season.  相似文献   

9.
盛后财  蔡体久  俞正祥 《生态学报》2016,36(19):6266-6273
森林冠层对降雨的水量和水质再分配是生态水文学研究的热点问题之一。为了研究兴安落叶松林下穿透雨的空间分布规律,探究森林冠层结构对穿透雨影响的生态机制,利用在兴安落叶松林下布设38个雨量筒,测定19场不同降雨事件的穿透雨数据(2013年7—8月),通过统计学方法分析冠层结构各因子与穿透雨的空间变异性规律,结果表明:观测期间,兴安落叶松林穿透雨量为148.3 mm,占同期大气降雨量的80.62%,穿透雨率随着降雨量的增加呈增加趋势;兴安落叶松林下穿透雨具有较大空间异质性,其变异程度随降雨量的增加而减小,以对数方程拟合较好(P0.01);冠层结构特征是影响穿透雨空间变异的重要因素,冠层复杂程度与穿透雨量呈负相关关系(P0.01);距树干距离、冠层厚度、叶面积指数等因素均可影响穿透雨的空间分布,以距树干距离影响最大,其与穿透雨率呈正相关关系(P0.01),而冠层厚度、叶面积指数则均与穿透雨率呈负相关关系(P0.01),但拟合效果不佳;从影响穿透雨的生态学机制来考虑,在冠层结构特征因子中,冠层厚度是决定穿透雨空间分布的最主要因素。  相似文献   

10.
利用2004和2005年生长季(6~9月份)六盘山自然保护区的香水河小流域内华山松天然林的穿透降雨、树干径流和冠层截留量观测资料,通过对华山松林降雨再分配特征和穿透降雨空间变异及其影响因素的综合分析,所得结果表明华山松天然林的穿透降雨量、树干径流量和冠层截留量,分别占大气降雨量的84.34%、0.72%和14.94%.穿透降雨在林内具有较大的空间变异,其变异程度随降雨量的增加而减小,冠层对穿透降雨具有一定的聚集效应,降雨量越高时效应越明显; 华山松冠层结构特征是影响穿透降雨的重要因素, 叶面积指数、冠层覆盖度、冠层厚度及距树干的距离等都会影响穿透降雨的空间分布,其中以叶面积指数的影响最大.由分析结果可知,冠层结构特征是决定大气降雨再分配和空间变异的重要生态因素之一.  相似文献   

11.
Rainfall partitioning and redistribution by canopies are important ecohydrological processes underlying ecosystem dynamics. We quantified and contrasted spatial and temporal variations of rainfall redistribution for a juniper (Juniperus virginiana, redcedar) woodland and a tallgrass prairie in the south-central Great Plains, USA. Our results showed that redcedar trees had high canopy storage capacity (S) ranging from 2.14 mm for open stands to 3.44 mm for closed stands. The canopy funneling ratios (F) of redcedar trees varied substantially among stand type and tree size. The open stands and smaller trees usually had higher F values and were more efficient in partitioning rainfall into stemflow. Larger trees were more effective in partitioning rainfall into throughfall and no significant changes in the total interception ratios among canopy types and tree size were found. The S values were highly variable for tallgrass prairie, ranging from 0.27 mm at early growing season to 3.86 mm at senescence. As a result, the rainfall interception by tallgrass prairie was characterized by high temporal instability. On an annual basis, our results showed no significant difference in total rainfall loss to canopy interception between redcedar trees and tallgrass prairie. Increasing structural complexity associated with redcedar encroachment into tallgrass prairie changes the rainfall redistribution and partitioning pattern at both the temporal and spatial scales, but does not change the overall canopy interception ratios compared with unburned and ungrazed tallgrass prairie. Our findings support the idea of convergence in interception ratio for different canopy structures under the same precipitation regime. The temporal change in rainfall interception loss from redcedar encroachment is important to understand how juniper encroachment will interact with changing rainfall regime and potentially alter regional streamflow under climate change.  相似文献   

12.
Lianas can negatively affect their host tree. The evidence comes from studies in tropical forests, where lianas decrease the growth rate and reproduction of their host tree. This is primarily a consequence of water and nutrient competition, two limiting factors in tropical forests. In contrast, for some areas of southern temperate rainforests the competition for these resources could be less severe, because of the high rainfall and fertile soils. But so far, no study has determined the effect of liana competition over their host tree in southern temperate rainforests. The aim of this study was to evaluate, in field conditions, the effect of liana Cissus striata (Ruiz & Pavon) competition over the growth rate of mature Nothofagus obliqua (Bidr Egefam) host tree. In an experimental approach, we determined whether above‐ and/or below‐ground competition is more important in this interaction. We also looked for compensatory strategies that would allow to trees to respond to liana competition. In field conditions, we found that infested trees have a decrease in their relative growth rate of 26% and a reduction of the leaf area index (LAI) of 20% compared with control trees. In the greenhouse experiment, we found that saplings were water stressed and that there was light competition. Neither competition for water nor light had a significant effect on the growth rate of infested saplings. This could be explained because saplings showed compensatory strategies in response to competition. These strategies were based in the biomass distribution between organs (leaf area, slenderness index) and within leaves (LMA). In conclusion, we found that C. striata has a negative effect over the growth of mature and sapling N. obliqua host trees. This was a consequence of above‐ground and below‐ground competition, but we cannot disentangle which type of competition is more important. Trees respond to liana competition, mature host trees change the canopy architecture and saplings allocate resource between and within organs, which allows them to optimize resource capture.  相似文献   

13.
A detailed biometrical study of the exotic understorey invader Prunus serotina (Ehrh.) was carried out in a mixed coniferous forest stand in northern Belgium. Based on detailed destructive measurements of eight selected model trees, allometric relations of tree height, crown projected area, woody and leaf dry mass and leaf area on tree diameter at breast height (DBH) were derived. The scaling-up procedure from the tree to the stand level was done using the frequency distribution of DBH obtained at the selected experimental plot. The vertical and radial distributions of the tree foliage were estimated by the “cloud” technique. The vertical profile of leaf area showed a bimodal distribution pattern with maxima at heights of 4 and 6 m above the ground. The leaf area index (LAI) of the understorey Prunus serotina as estimated by the described up-scaling procedure (5.1) was significantly higher than the LAI (2.6) as measured by a plant canopy analyser and was also significantly higher than the LAI of the overstorey species Scots pine (1.5–3.0). The LAI of a neighbouring Rhododendron understorey reached only 1.25. This study emphasises the importance of an exotic understorey species in the total leaf area of mixed coniferous forests which might have important implications for the energy and mass exchanges of the entire forest.  相似文献   

14.
Calder  Ian R. 《Plant Ecology》2001,153(1-2):203-214
Some recent experimental and theoretical developments in research related to tropical forest canopies are reviewed. Deuterium tracing studies in India, which rely on the collection of samples of transpired water from leaves in the canopy, have established the importance of tree size as an index of whole tree transpiration and the use of leaf area, basal area and sapwood area for scaling transpiration from the tree to plot scale is discussed.Experimental studies of the interception loss from tropical trees in Indonesia, India and Sri Lanka have established that conventional interception models of the Rutter type, although adequate for use in temperate climates, are entirely inappropriate for use in the tropics. It is now recognised that the failure of this approach is due to neglect of the process of drop size dependent canopy wetting. The use of rainfall simulators and optical disdrometers in the tropics has demonstrated that to achieve the same degree of canopy wetting upwards of ten times the depth of rainfall may be required for high intensity tropical storms (with large drop sizes) as compared with low intensity, frontal rainfall systems, common in temperate climates. Rainfall simulator studies have also demonstrated that the final degree of wetting is also reduced when vegetation is wetted with drops of large size. These studies have also demonstrated that the drop size of secondary drops falling from vegetation is dependent on the vegetation type and is very much greater for large leafed species such as Tectona grandis as compared with species such as Pinus caribaea with smaller needle formed leaves.The combination, in the tropics, of large drop sizes in the primary rainfall and large drop sizes in secondary drops falling from vegetation helps to explain why in absolute and relative terms interception loss from tropical trees is less than that in temperate climates. The recognition that drop size generation is related to vegetation type has important implications for splash induced erosion and the choice of tree species on soils subject to erosion.Knowledge of forest canopy processes is now leading to a better appreciation of the hydrological, meteorological and water resource impacts of forests. The impact of trees in Amazonia and the Sahel on climate and trees in the Zambezi basin on water resources is discussed. New spatially distributed modelling methods which are being incorporated within Decision Support Systems for forest and water resource management, which also take account of ecological and socio-economic objectives, are also outlined.  相似文献   

15.
 In this study a comparison of the canopy architecture and the growth and distribution of roots was made in 10-year-old trees of Hevea brasiliensis grown in a severely drought-prone area on the west coast of India under rainfed and irrigated conditions. LAI and light interception increased significantly in the irrigated compared to the rainfed trees. Girth and height of the tree were 29 and 19% more while width and height of the canopy were 19 and 20% more in the irrigated than rainfed trees. There were 22% more primary branches which had 26% more diameter in the irrigated trees than rainfed trees. The branches were inserted on the main trunk at an angle of 58.36° in the irrigated and 44.22° in rainfed trees. The above changes led to more light penetration which altered the light distribution inside the rainfed trees during summer and inhibited leaf photosynthesis particularly in the top canopy leaves. In the rainfed trees most of the growth occurred during the short favorable season immediately after the monsoon between June and October and no growth or even shrinking of the trunk was seen during summer. In the irrigated trees a higher growth was seen throughout the year and summer had no adverse effect. Although there was some difference in the root distribution pattern, the total root density per unit soil volume did not vary between the irrigated and rainfed trees. Key words  Hevea brasiliensis· Drought · Crown architecture · Micro-climate · Root growth Received: 8 May 1998 / Accepted 8 October 1998  相似文献   

16.
Gash模型在黄土区人工刺槐林冠降雨截留研究中的应用   总被引:5,自引:0,他引:5  
王艳萍  王力  卫三平 《生态学报》2012,32(17):5445-5453
为了验证Gash林冠截留解析模型在黄土高原人工林中的适用性,基于2009年黄土丘陵沟壑区吕梁市王家沟小流域刺槐林样地降雨观测数据,采用Gash模型对林冠截留进行了模拟。所选刺槐林分为人工纯林,林龄约30a,阴坡,坡度24°,密度为990株/hm2,平均树高10.8 m,平均胸径12.4 cm,郁闭度0.76。根据回归方法确定了Gash模型中的主要参数,包括饱和林冠的平均蒸发速率(E珔)、林冠枝叶部分的持水能力(S)、自由穿透降雨系数(p)、树干持水能力(St)和树干茎流系数(Pt)。结果显示,2009年5月至10月人工刺槐林样地实测降雨量为366.9 mm,穿透降雨量为317.5 mm,树干茎流为10.2 mm,林冠截留量为39.2 mm。模型模拟的林冠截留量为42.4 mm,高于实测值3.2 mm,相对误差为8.2%。敏感性分析表明,S、E珔、St和pt每增加10%,林冠截留量分别增加4.7%,3.1%,1.7%和0.5%;p增加10%,林冠截留量则减少2.6%。说明树干持水能力(St)和树干茎流系数(pt)两个参数对黄土高原人工刺槐林冠截留量的预测值影响程度较小。模拟值与实测值有较好的一致性,显示Gash模型适用于黄土高原人工刺槐林冠的截留计算。  相似文献   

17.
Leaf area, crown projection area and growth over the last 5 years were measured to assess growth efficiency (GE) and crown efficiency (CE) of dominant (D), codominant (CD) and suppressed (SP) trees growing in height-repressed (P sites) and normally developing (M sites) lodgepole pine stands. Leaf area index (LAI), hydraulic characteristics, and needle nutrient concentrations were also measured. Volume growth of P site trees between 1994 and 1999 was 46% that of M site trees. Volume growth was closely associated with both hydraulic supply capacity (Q*) and leaf area. Height repression was not associated with lower GE, but P site trees had CE that was 24.5% lower than M site trees. Average GE of D and CD trees was 28% lower than that of SP trees, while mean CE for the D trees was 46% greater than that of CD, and 80% greater than for SP trees. Between M and P sites, canopy LAI and Q* per unit leaf area did not differ. Needle nitrogen (N) concentrations of M site trees were 7.6% greater than for P site trees. SP tree needles had the highest concentration of N and phosphorus. The nutrient advantage enjoyed by SP trees presumably allowed them to maintain higher GE for a given Q*/Al. The fastest growing trees were the large D and CD trees from M sites. As LAI did not differ between sites, height repression on P sites may be a result of total leaf area being distributed among too many small trees.  相似文献   

18.
荒漠草原中间锦鸡儿冠层截留特征   总被引:2,自引:1,他引:1  
田娜  古君龙  杨新国  王磊  杨东东  苗翻  孟明 《生态学报》2019,39(14):5279-5287
以荒漠草原人工中间锦鸡儿(Caragana intermedia)为研究对象,利用2016-2017年监测获取的26次降雨事件,对比分析了两组灌丛(自然组和人工组)的冠层截留特征。结果表明:(1)试验期间共观测到有效降雨33次,总降雨量为251 mm,次平均降雨量和降雨强度分别为7.6 mm和1.14 mm/h,以雨量<2 mm,雨强<1 mm/h和降雨历时2-5 h的降雨出现次数最多;(2)自然组和人工组中间锦鸡儿平均截留量分别为1.11 mm和0.72 mm,平均截留率分别为24.81%和15.95%,两组灌丛截留存在极显著差异(P < 0.01);(3)在雨量级>15 mm时,自然组(4.57%,CV=73.38%)和人工组(5.25%,CV=51.96%)平均截留率变异性相差最大;(4)自然组和人工组截留量与降雨量,降雨历时和降雨强度之间的关系可以用幂函数描述,截留率与三者的关系均用指数函数描述较好。在降雨特征相同的情况下,灌丛形态特征是影响中间锦鸡儿冠层截留的关键因素。  相似文献   

19.
Mallee, a shrub-eucalypt association, once covered large areas of the cereal growing land in Western Australia. The hydrologic consequences of land development have been more than a doubling of water yield and increased deep drainage beyond the plant-root zone. The latter has led to large areas of soil salinization. The uncleared catchment studied was covered with mallee vegetation (65%) and a heath association (35%). Over 12 years of measurement, runoff from the catchment has averaged 0.025 mm per annum with a mean annual rainfall of 376 mm. Half of the runoff resulted from two major events totalling 0.15 mm. Since there was no evidence of groundwater accession in the catchment, the rainfall was balanced by evapotranspiration. Despite virtually no runoff from the whole catchment, considerable internal redistribution of surface water occurred, with localized overland flow in some areas as high as 7.7 mm from 30.9 mm of rainfall in one day. Rainfall penetrated rapidly under the mallee vegetation and the rate of penetration observed could not be achieved solely through the soil even if there was saturated flow. A typical stand of native mallee trees (Eucalyptus pileata and E. eremophila) in the catchment effectively redistributed 8% of the annual rain falling on the stand with 3% lost as interception and 5% going to stemflow. However, on an individual tree basis some 15% of the rain falling on the canopy was lost as intercepted water and 25% ran down the stem. The stemflow caused saturated conditions around the bole of the mallee and dye tracing showed that the water penetrated the soil via the annular pathways of the soil-root interface. Roots of mallee trees were found at 28 m depth and it is postulated that the mallees are adapted to the semi-arid environment by virtue of their ability to store water deep in the soil profile for use during the dry summer months.  相似文献   

20.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号