首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi-decadal Changes in Water Table Levels Alter Peatland Carbon Cycling   总被引:1,自引:0,他引:1  
Globally, peatlands store a large quantity of soil carbon that can be subsequently modified by hydrologic alterations from land-use change and climate change. However, there are many uncertainties in predicting how carbon cycling and greenhouse gas emissions are altered by long-term changes in hydrology. Therefore, the goal of this study was to quantify how multi-decadal manipulations of water table (WT) levels affected carbon cycling (plant production and net ecosystem exchange from three eddy covariance towers) in a peatland complex modified by levee construction, which created a wetter area up-gradient of the levee (mean WT was 12.1 cm below the surface), a dry area below the levee (36.8 cm), and an adjacent reference site not affected by the levee (21.6 cm). We found that mean total plant production was greatest in the reference site (311.9 g C m?2 y?1), followed by the dry site (290.5 g C m?2 y?1), and lowest in the wet site (227.1 g C m?2 y?1). Net ecosystem exchange during the growing season was negative for all sites (sink), with the wet site having the greatest sink and the dry site having the lowest sink. Ecosystem respiration increased and CH4 emissions decreased with a decreasing WT level. This research demonstrates that human alteration of peatland WT levels can have long-term (>50 years) consequences on peatland carbon cycling.  相似文献   

2.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

3.
A restoration trial of grassy woodland on former agricultural land applied carbon at a standard rate (840 g C/m2/year) and at a high rate (4,200 g C/m2/year), to test whether further benefits to native plants and suppression of exotics would emerge. Carbon addition at the high rate reduced plant cover further than the standard rate but led to severe loss of plant species; it also reduced soil pH. Soil Al, Fe and Mn levels increased across the gradient of C addition, which would be consistent with the reduction in soil pH for Al and Mn, and a decrease in soil redox potential for Mn and Fe. Nutrient analysis of leaf tissue confirmed that uptake of Fe and Mn increased over the range of C addition, with the concentration of Mn in the high carbon treatment exceeding the threshold for toxicity for a range of species. The soil and plant tissue data are consistent with the induction of increased soil acidity and of stronger reducing conditions in the soil by high level of carbon addition and localised soil flooding. Plant uptake of Mn to toxic levels occurred subsequently, leading to negative effects on plants; aluminium phytotoxicity may also have occurred.  相似文献   

4.
Bioenergy has been identified as a key component of climate change mitigation. Therefore, quantifying the net carbon balance of bioenergy feedstocks is crucial for accurate projections of climate mitigation benefits. Switchgrass (Panicum virgatum) has many characteristics of an ideal bioenergy crop with high yields, low maintenance, and deep roots with potential for belowground carbon sequestration. However, the assessments of net annual carbon exchange between switchgrass fields and the atmosphere are rare. Here we present observations of net carbon fluxes in a minimally managed switchgrass field in Virginia (Ameriflux site US-SB2) over 5 years (3–7 years since establishment). Average annual net ecosystem exchange (NEE) of carbon was near zero (60 g C m?2 year?1) but the net ecosystem carbon balance that includes harvested carbon (HC) was a net source of carbon to the atmosphere (313 g C m?2 year?1). The field alternated between a large and small source of carbon annually, with the interannual variability most strongly correlated with the day of the last frost and the interaction of temperature and precipitation. Overall, the consistent source of carbon to the atmosphere at US-SB2 differs substantially from other eddy covariance studies that report switchgrass fields to be either neutral or a sink of carbon when accounting for both NEE and HC. This study illustrates that predictions of net carbon climate benefits from bioenergy crops cannot assume that the ecosystem will be a net sink of carbon from the atmosphere. Background climate, management, and land-use history may determine whether widespread deployment of switchgrass as a bioenergy feedstock results in realized climate change mitigation.  相似文献   

5.
Results of this study describe the feasibility of anaerobic treatment of highly concentrated phenol synthetic wastewater using an anaerobic fluidized bed reactor (AFBR) in both continuous and batch modes. Wastewater with a maximum load of 2,100 mg C·l−1 was prepared using phenol (maximum concentration of 1,600 mg C·l−1) as substrate and a mixture of acetic, propionic and butyric acids (500 mg C·l−1) as co-substrate. AFBR reached total organic carbon (TOC) and phenol removal efficiency over 95% treating the highest organic loading rate (OLR) containing phenol studied for this kind of reactor (5.03 g C·l−1·d−1). The phenol loading rate rise caused volumetric biogas rate increase up to 4.4 l·l−1·d−1 (average yield of 0.28 l CH4·g−1 CODremoved) as well as variation in the biogas composition; the CO2 percentage increased while the CH4 percentage decreased. Morphological examination of the bioparticles at 4.10 g C·l−1·d−1, revealed significant differences in the biofilm structure, microbial colonization and bacterial morphological type development. The five batch assays showed that phenol degradation may be favoured by the presence of volatile fatty acids (VFAs) (co-metabolism), whereas VFAs degradation may be inhibited by phenol. AFBR reached initial phenol degradation velocity of 0.25 mg C·l−1·min−1.  相似文献   

6.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

7.
We evaluated how three co‐occurring tree and four grassland species influence potentially harvestable biofuel stocks and above‐ and belowground carbon pools. After 5 years, the tree Pinus strobus had 6.5 times the amount of aboveground harvestable biomass as another tree Quercus ellipsoidalis and 10 times that of the grassland species. P. strobus accrued the largest total plant carbon pool (1375 g C m?2 or 394 g C m?2 yr), while Schizachyrium scoparium accrued the largest total plant carbon pool among the grassland species (421 g C m?2 or 137 g C m?2 yr). Quercus ellipsoidalis accrued 850 g C m?2, Q. macrocarpa 370 g C m?2, Poa pratensis 390 g C m?2, Solidago canadensis 132 g C m?2, and Lespedeza capitata 283 g C m?2. Only P. strobus and Q. ellipsoidalis significantly sequestered carbon during the experiment. Species differed in total ecosystem carbon accumulation from ?21.3 to +169.8 g C m?2 yr compared with the original soil carbon pool. Plant carbon gains with P. strobus were paralleled by a decrease of 16% in soil carbon and a nonsignificant decline of 9% for Q. ellipsoidalis. However, carbon allocation differed among species, with P. strobus allocating most aboveground in a disturbance prone aboveground pool, whereas Q. ellipsoidalis, allocated most carbon in less disturbance sensitive belowground biomass. These differences have strong implications for terrestrial carbon sequestration and potential biofuel production. For P. strobus, aboveground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant carbon gains. Conversely the harvest of Q. ellipsoidalis aboveground biomass would result in net sequestration of carbon belowground due to its high allocation belowground, but would yield lower amounts of aboveground biomass. Our results demonstrate that plant species can differentially impact ecosystem carbon pools and the distribution of carbon above and belowground.  相似文献   

8.
Photosynthesis-irradiance relationships were determined in the field for five species of littoral and shallow sublittoral marine benthic green algae (Chlorophyta) of differing morphologies. Each species exhibited a linear increase in photosynthetic rate with increasing irradiance up to a maximum light-saturated value. Full sunlight (1405 to 1956 μE·m?2·s?1) inhibited photosynthesis of all species except the thick, optically dense, Codium fragile (Sur.) Har. Compensation irradiances ranged from 6.1 μE·m?2·s?1 for Enteromorpha intestinalis (L.) Link to 11.4 μE·m?2·s?1 for Ulva lobata (Kütz) S. & G. and did not reveal a consistent relationship to seaweed morphology. Saturation irradiances were determined statistically (Ik) and visually from graphical plots. with the latter technique resulting in values three to eight times higher and different comparative rankings of species than the former. Ik saturation irradiances were highest for Chaetomorpha linum (Müll.) Kütz. (81.9 μE·m?2·s?1) and lowest for Codium fragile (49.6 μE·m?2·s?1) and did not reveal a relationship with seaweed morphology. Regression equations describing light-limited photosynthetic rates and the relative magnitudes of the maximal net photosynthetic responses both strongly suggested a relationship with seaweed morphology. Highest net photosynthetic rates were obtained for the thin, sheet-like algae Ulva lobata (9.2 mg C·g dry wt?1·h?1), U. rigida C. Ag. (6.5 mg C·g dry wt?1·h?1) and the tubular form, Enteromorpha intestinalis (7.3 mg C·g dry wt?1·h?1), while lowest rates occurred for Codium fragile (0.9 mg C·g dry wt?1·h?1). Similarly, steepest light-limited slopes were found for the algae of simpler morphology, while the most gradual slope was determined for Codium fragile, the alga with greatest thallus complexity.  相似文献   

9.
A routine sampling technique has been developed using artificial styrofoam substrate to estimate benthic algal productivity in the littoral zone of lakes. Estimation of maximum carbon fixed in Lake Tahoe ranged from 11.1 mg C·m?2· day?1 at 0.5 m to 17.1 mg C·m?2· day?1 at 1.0 m. Estimates were made for communities composed of both diatom and green algal populations in water between 0.5 and 3.0 m. Maximum productivity occurred between 1–2 m. The technique developed can give comparable estimates of productivity if adequate replication is undertaken to decrease problems associated with periphytic heterogeneity.  相似文献   

10.
Abstract Climatic conditions should not hinder nutrient release from decomposing leaf‐litter (mineralization) in the humid tropics, even though many tropical forests experience drought lasting from several weeks to months. We used a dry‐season irrigation experiment to examine the effect of seasonal drought on nutrient concentrations in leaf‐fall and in decomposing leaf‐litter. In the experiment, soil in two 2.25‐ha plots of old‐growth lowland moist forest on Barro Colorado Island, Republic of Panama, was watered to maintain soil water potential at or above field capacity throughout the 4‐month dry season. Wet‐season leaf‐fall had greater concentrations of nitrogen (N, 13.5 mg g?1) and calcium (Ca, 15.6 mg g?1) and lower concentrations of sulfur (S, 2.51 mg g?1) and potassium (K, 3.03 mg g?1) than dry‐season leaf‐fall (N = 11.6 mg g?1, Ca = 13.6 mg g?1, S = 2.98 mg g?1, K = 5.70 mg g?1). Irrigation did not affect nutrient concentrations or nutrient return from forest trees to the forest floor annually (N = 18 g m?2, phosphorus (P) = 1.06 g m?2, S = 3.5 g m?2, Ca = 18.9 g m?2, magnesium = 6.5 g m?2, K = 5.7 g m?2). Nutrient mineralization rates were much greater during the wet season than the dry season, except for K, which did not vary seasonally. Nutrient residence times in forest‐floor material were longer in control plots than in irrigated plots, with values approximately equal to that for organic matter (210 in control plots vs 160 in irrigated plots). Calcium had the longest residence time. Forest‐floor material collected at the transition between seasons and incubated with or without leaching in the laboratory did not display large pulses in nutrient availability. Rather, microorganisms immobilized nutrients primarily during the wet season, unlike observations in tropical forests with longer dry seasons. Large amounts of P moved among different pools in forest‐floor material, apparently mediated by microorganisms. Arylsulfatase and phosphatase enzymes, which mineralize organically bound nutrients, had high activity throughout the dry season. Low soil moisture levels do not hinder nutrient cycling in this moist lowland forest.  相似文献   

11.
The rate of change in atmospheric CO2 is significantly affected by the terrestrial carbon sink, but the size and spatial distribution of this sink, and the extent to which it can be enhanced to mitigate climate change are highly uncertain. We combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001–2016) in a 55 year old 30 km2 pine forest growing at the semiarid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semiarid lands, which cover ~18% of the global land area. The forest accumulated 145–160 g C m?2 year?1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m?2 year?1 indicating 20% uncertainty in carbon uptake estimates. Current total stocks are estimated at 7,943 ± 323 g C/m2 and 372 g N/m2. Carbon accumulated mostly in the soil (~71% and 29% for soil and standing biomass carbon, respectively) with long soil carbon turnover time (59 years). Regardless of unexpected disturbances beyond those already observed at the study site, the results support a considerable carbon sink potential in semiarid soils and forest plantations, and imply that afforestation of even 10% of semiarid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C/year over several decades.  相似文献   

12.
Light utilization efficiency in five species of marine macroalgae was measured in laboratory growth experiments (13–41 days duration) at different irradiances at 7°C. All species acclimated to irradiance by changing their light absorption, resulting in a peak in light absorption between 2 and 15 μmol·m?2.s?1. Light absorption increased with thallus-specific chlorophyll and carbon content according to linear inverse relationships between chlorophyll content (chlarea?1) and log[transmission] and between log[carbon content, Carea?1] and log[transmission]. Quantum yields for light-limited growth and estimated gross photosynthesis were calculated based on incident and absorbed light. Quantum yield for photosynthesis based on light absorbed by pigments was high (mean = 114 mmol C·mol?1 photons) and similar among the species. Quantum yield for net growth based on incident light was also high but more variable, between 22 and 75 mmol C·mol?1 photons. Differences among species were mainly due to differences in light absorption. In conclusion, all species acclimated to low light by increasing light absorption to the maximum attainable, and growth efficiencies based on absorbed light were close to the maximum theoretically possible.  相似文献   

13.
西辽河流域植被NPP时空分布特征及其影响因素研究   总被引:1,自引:0,他引:1  
朱丽亚  孙爽  胡克 《广西植物》2020,40(11):1563-1674
为研究西辽河流域植被生长特征及受气候变化的影响,该文以2000年—2015年MOD17A3的年均植被净初级生产力(NPP)数据、植被类型数据、土壤类型数据以及气温、降水资料为基础,利用GIS和RS技术,分析了西辽河流域植被净初级生产力时空格局、演变特征及驱动因子。结果表明:(1)西辽河流域近16年来植被NPP总量呈波动增加的趋势,变化范围为156.89~260.90 g C·m-2·a-1,平均值为219.76 g C·m-2·a-1,空间分布呈“边缘高、中间低”的特征; 植被NPP变化斜率为-16.53~16.65,95.74%的区域NPP呈增加趋势。(2)不同植被类型的NPP总量大小排序为草原>栽培植被>阔叶林>灌丛>草甸>针叶林; 西辽河流域固碳的植被类型主要是草原、栽培植被以及阔叶林,固碳能力较强的为针叶林。(3)生长在棕壤、褐土和潮土的植被年均NPP较高,生长在栗钙土和风沙土的植被年均NPP较低。(4)16年间植被NPP增长主要受降雨影响。气候暖-湿化及生态建设工程的实施,促进了西辽河流域植被的生长。以上研究结果为后期流域生态环境治理提供了科学依据及数据支持。  相似文献   

14.
Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during 1 year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year−1. Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m−2 year−1, 55 g N m−2 year−1, and 13 g P m−2 year−1.  相似文献   

15.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

16.
Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide ( \( {\text{ER}}_{{{\text{CO}}_{2} }} \) ) or methane ( \( {\text{ER}}_{{{\text{CH}}_{4} }} \) ), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m?2 year?1) and 210Pb radiodating (336 g C m?2 year?1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m?2 year?1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m?2 year?1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m?2 year?1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm?1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m?2 year?1), making this site a significant GHG source (>2,000 g CO2-eq m?2 year?1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m?2 year?1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.  相似文献   

17.
Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m?2 year?1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m?2 year?1). As N addition increased beyond 10 g N m?2 year?1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.  相似文献   

18.
We present the energy and mass balance of cerrado sensu stricto (a Brazilian form of savanna), in which a mixture of shrubs, trees and grasses forms a vegetation with a leaf area index of 1·0 in the wet season and 0·4 in the dry season. In the wet season the available energy was equally dissipated between sensible heat and evaporation, but in the dry season at high irradiance the sensible heat greatly exceeded evaporation. Ecosystem surface conductance gs in the wet season rose abruptly to 0·3 mol m?2 s?1 and fell gradually as the day progressed. Much of the total variation in gs was associated with variation in the leaf-to-air vapour pressure deficit of water and the solar irradiance. In the dry season the maximal gs values were only 0·1 mol m?2 s?1. Maximal net ecosystem fluxes of CO2 in the wet and dry season were –10 and –15 μmol CO2 m?2 s?1, respectively (sign convention: negative denotes fluxes from atmosphere to vegetation). The canopy was well coupled to the atmosphere, and there was rarely a significant build-up of respiratory CO2 during the night. For observations in the wet season, the vegetation was a carbon dioxide sink, of maximal strength 0·15 mol m?2 d?1. However, it was a source of carbon dioxide for a brief period at the height of the dry season. Leaf carbon isotopic composition showed all the grasses except for one species to be C4, and all the palms and woody plants to be C3. The CO2 coming from the soil had an isotopic composition that suggested 40% of it was of C4 origin.  相似文献   

19.
Energy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from ?147 ± 70 to ?502 ± 84 g CO2‐C m?2 year?1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was ?87 ± 303 g CO2‐C m?2 for the complete production cycle after accounting for C export at harvest (1,183 g C m?2), and was approximately CO2‐C neutral (?21 g CO2‐C m?2 year?1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions.  相似文献   

20.
Unvegetated flats occupy a large area in the intertidal zone. However, compared to vegetated areas, the carbon sequestration of unvegetated tidal flats is rarely quantified, even though these areas are highly threatened by human development and climate change. We determined benthic maximum gross primary production (GPPm), net primary production (NPP) and total respiration (TR) during emersion on seven tidal flats along a latitudinal gradient (from 22.48°N to 40.60°N) in winter and summer from 2012 to 2016 to assess the spatial and temporal variability of carbon dioxide flux. In winter, these processes decreased by 89%–104% towards higher latitudes. In summer, however, no clear trend was detected across the latitudinal gradient. Quadratic relationships between GPPm, NPP and TR and sediment temperature can be described along the latitudinal gradient. These curves showed maximum values of GPPm and NPP when the sediment temperatures reached 28.7 and 26.6°C respectively. TR increased almost linearly from 0 to 45°C. The maximum daily NPP across the latitudinal gradient averaged 0.24 ± 0.28 g C m?2 day?1, which was only 10%–20% of the global average of NPP of vegetated coastal habitats. Multiplying with the global area of unvegetated tidal flats, our results suggest that the contribution of NPP on unvegetated tidal flats to the coastal carbon cycle is small (11.04 ± 13.32 Tg C/year). If the land cover of vegetated habitats is continuously degraded to unvegetated tidal flats, the carbon sequestration capacity in the intertidal zone is expected to reduce by at least 13.10 Tg C/year, equivalent to 1% of global carbon emissions from land‐use change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号