首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. Recent in vitro and in vivo studies have suggested that reactive oxygen species (ROS) may play an important role in cardiac hypertrophy. It was therefore thought to be of particular value to examine the effects of antioxidants on cardiac hypertrophy. Epigallocatechin-3-gallate (EGCG) is a major bioactive polyphenol present in green tea and a potent antioxidant. The current study was designed to test the hypothesis that EGCG inhibits cardiac hypertrophy in vitro and in vivo. In this study, we investigated the effects of EGCG on angiotensin II- (Ang II) and pressure-overload-induced cardiac hypertrophy. Our results showed that EGCG attenuated Ang II- and pressure-overload-mediated cardiac hypertrophy. Both reactive oxygen species generation and NADPH oxidase expressions induced by Ang II and pressure overload were suppressed by EGCG. The increased hypertension by pressure overload was almost completely blocked after EGCG treatment. Further studies showed that EGCG inhibited Ang II-induced NF-kappaB and AP-1 activation. Inhibition of the activity of NF-kappaB was through blocking ROS-dependent p38 and JNK signaling pathways, whereas inhibition of AP-1 activation was via blocking EGFR transactivation and its downstream events ERKs/PI3K/Akt/mTOR/p70(S6K). The combination of these actions resulted in repressing the reactivation of ANP and BNP, and ultimately preventing the progress of cardiac hypertrophy. These findings indicated that EGCG prevents the development of cardiac hypertrophy through ROS-dependent and -independent mechanisms involving inhibition of different intracellular signaling transductional pathways.  相似文献   

2.
Oxidative stress plays a critical role in the progression of pathological cardiac hypertrophy and heart failure. Because crocetin represses oxidative stress in vitro and in vivo , we have suggested that crocetin would repress cardiac hypertrophy by targeting oxidative stress-dependent signalling. We tested this hypothesis using primary cultured cardiac myocytes and fibroblasts and one well-established animal model of cardiac hypertrophy. The results showed that crocetin (1–10 μM) dose-dependently blocked cardiac hypertrophy induced by angiogensin II (Ang II; 1 μM) in vitro . Our data further revealed that crocetin (50 mg/kg/day) both prevented and reversed cardiac hypertrophy induced by aortic banding (AB), as assessed by heart weight/body weight and lung weight/body weight ratios, echocardio-graphic parameters and gene expression of hypertrophic markers. The inhibitory effect of crocetin on cardiac hypertrophy is mediated by blocking the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase-1/2 (MEK/ERK1/2) pathway and GATA binding protein 4 (GATA-4) activation. Further investigation demonstrated that crocetin inhibited inflammation by blocking nuclear factor kappa B (NF-κB) signalling and attenuated fibrosis and collagen synthesis by abrogating MEK-ERK1/2 signalling. Overall, our results indicate that crocetin, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis by suppression of ROS-dependent signalling pathways.  相似文献   

3.
Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. The hypertrophic process is mediated, in part, by oxidative stress-mediated signaling pathways. We hypothesized that isorhapontigenin (ISO), a new resveratrol analog, inhibits cardiac hypertrophy by blocking oxidative stress and oxidative stress-mediated signaling pathways. We treated cardiomyocytes with angiotensin II (Ang II) with or without ISO and found that ISO inhibited Ang II-induced cardiac hypertrophy. These effects were associated with a decrease in the levels of reactive oxygen species and H2O2 and the content of intracellular malonaldehyde and an increase in the activities of superoxide dismutase and glutathione peroxidase. Ang II induced the phosphorylation of PKC, Erk1/2, JNK, and p38 in cardiomyocytes and such phosphorylation was inhibited by ISO. ISO also blocked the PKC-dependent PI3K-Akt-GSK3beta/p70S6K pathway. These effects lead to direct or indirect inhibition of NF-kappaB and AP-1 activation. Our results revealed that pretreatment with ISO significantly inhibited Ang II-mediated NF-kappaB through affecting the degradation and phosphorylation of IkappaBalpha and the activity of IKKbeta and AP-1 activation by influencing the expression of c-Fos and c-Jun proteins. In addition, we also established the molecular link between activation of PKC and MAPKs and activation of NF-kappaB and AP-1 in cardiomyocytes. We also found that ISO treatment significantly attenuated heart weight/body weight ratio by approximately 25%, decreased posterior wall thickness and left ventricle diastolic and systolic diameters, and increased 10% fractional shortening in an aortic-banded rat model. Furthermore, treatment with ISO significantly decreased cardiac myocyte size and systolic blood pressure. These findings suggest that ISO prevents the development of cardiac hypertrophy through an antioxidant mechanism involving inhibition of different intracellular signaling transduction pathways.  相似文献   

4.
Cardiac hypertrophy is a major determinant of heart failure. The epidermal growth factor receptor (EGFR) plays an important role in cardiac hypertrophy. Since silibinin suppresses EGFR in vitro and in vivo, we hypothesized that silibinin would attenuate cardiac hypertrophy through disrupting EGFR signaling. In this study, we examined this hypothesis using neonatal cardiac myocytes and fibroblasts induced by angiotensin II (Ang II) and animal model by aortic banding (AB) mice. Our data revealed that silibinin obviously blocked cardiac hypertrophic responses induced by pressure overload. Meanwhile, silibinin markedly reduced the increased generation of EGFR. Moreover, these beneficial effects were associated with attenuation of the EGFR‐dependent ERK1/2, PI3K/Akt signaling cascade. We further demonstrated silibinin decreased inflammation and fibrosis by blocking the activation of NF‐κB and TGF‐β1/Smad signaling pathways in vitro and in vivo. Our results indicate that silibinin has the potential to protect against cardiac hypertrophy, inflammation, and fibrosis through blocking EGFR activity and EGFR‐dependent different intracellular signaling pathways. J. Cell. Biochem. 110: 1111–1122, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

5.
Recent in vitro studies suggest that adenosine monophosphate (AMP)-activated protein kinase (AMPK) exerts inhibitory effects on cardiac hypertrophy. However, it is unclear whether long-term activation of AMPK will affect cardiac hypertrophy in vivo. In these reports, we investigate the in vivo effects of long-term AMPK activation on cardiac hypertrophy and the related molecular mechanisms. To examine the effects of AMPK activation in the development of pressure overload-induced cardiac hypertrophy, we administered 5-aminoimidazole 1 carboxamide ribonucleoside (AICAR, 0.5 mg/g body wt), a specific activator of AMPK, to rats with transaortic constriction (TAC) for 7 weeks. We found that long-term AMPK activation attenuated cardiac hypertrophy, and improved cardiac function in rats subjected to TAC. Furthermore, long-term AMPK activation attenuated protein synthesis, diminished calcineurin-nuclear factor of activated T cells (NFAT) and nuclear factor kappaB (NF-kappaB) signaling in pressure overload-induced hypertrophic hearts. Our in vitro experiments further proved that activation of AMPK by infection of AdAMPK blocked cardiac hypertrophy and NFAT, NF-kappaB, and MAPK signal pathways. The present study demonstrates for the first time that pharmacological activation of AMPK inhibits cardiac hypertrophy in through blocking signaling transduction pathways that are involved in cardiac growth. It presents a potential therapy strategy to inhibit pathological cardiac hypertrophy by increasing the activity of AMPK.  相似文献   

6.
Increase of myocardial oxidative stress is closely related to the occurrence and development of cardiac hypertrophy. Cordycepin, also known as 3'‐deoxyadenosine, is a natural bioactive substance extracted from Cordyceps militaris (which is widely cultivated for commercial use in functional foods and medicine). Since cordycepin suppresses oxidative stress both in vitro and in vivo, we hypothesized that cordycepin would inhibit cardiac hypertrophy by blocking oxidative stress‐dependent related signalling. In our study, a mouse model of cardiac hypertrophy was induced by aortic banding (AB) surgery. Mice were intraperitoneally injected with cordycepin (20 mg/kg/d) or the same volume of vehicle 3 days after‐surgery for 4 weeks. Our data demonstrated that cordycepin prevented cardiac hypertrophy induced by AB, as assessed by haemodynamic parameters analysis and echocardiographic, histological and molecular analyses. Oxidative stress was estimated by detecting superoxide generation, superoxide dismutase (SOD) activity and malondialdehyde levels, and by detecting the protein levels of gp91phox and SOD. Mechanistically, we found that cordycepin activated activated protein kinase α (AMPKα) signalling and attenuated oxidative stress both in vivo in cordycepin‐treated mice and in vitro in cordycepin treated cardiomyocytes. Taken together, the results suggest that cordycepin protects against post‐AB cardiac hypertrophy through activation of the AMPKα pathway, which subsequently attenuates oxidative stress.  相似文献   

7.
Adipose tissue secretes a variety of bioactive factors, which can regulate cardiomyocyte hypertrophy via reactive oxygen species (ROS). In the present study we investigated whether apelin affects ROS-dependent cardiac hypertrophy. In cardiomyocytes apelin inhibited the hypertrophic response to 5-HT and oxidative stress induced by 5-HT- or H2O2 in a dose-dependent manner. These effects were concomitant to the increase in mRNA expression and activity of catalase. Chronic treatment of mice with apelin attenuated pressure-overload-induced left ventricular hypertrophy. The prevention of hypertrophy by apelin was associated with increased myocardial catalase activity and decreased plasma lipid hydroperoxide, as an index of oxidative stress. These results show that apelin behaves as a catalase activator and prevents cardiac ROS-dependent hypertrophy.  相似文献   

8.
9.
Cardiac remodelling is a major determinant of heart failure (HF) and is characterised by cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. Hesperetin, which belongs to the flavonoid subgroup of citrus flavonoids, is the main flavonoid in oranges and possesses multiple pharmacological properties. However, its role in cardiac remodelling remains unknown. We determined the effect of hesperetin on cardiac hypertrophy, fibrosis and heart function using an aortic banding (AB) mouse. Male, 8–10-week-old, wild-type C57 mice with or without oral hesperetin administration were subjected to AB or a sham operation. Our data demonstrated that hesperetin protected against cardiac hypertrophy, fibrosis and dysfunction induced by AB, as assessed by heart weigh/body weight, lung weight/body weight, heart weight/tibia length, echocardiographic and haemodynamic parameters, histological analysis, and gene expression of hypertrophic and fibrotic markers. Also, hesperetin attenuated oxidative stress and myocytes apoptosis induced by AB. The inhibitory effect of hesperetin on cardiac remodelling was mediated by blocking PKCα/βII-AKT, JNK and TGFβ1-Smad signalling pathways. In conclusion, we found that the orange flavonoid hesperetin protected against cardiac remodelling induced by pressure overload via inhibiting cardiac hypertrophy, fibrosis, oxidative stress and myocytes apoptosis. These findings suggest a potential therapeutic drug for cardiac remodelling and HF.  相似文献   

10.
Breviscapine is a mixture of flavonoid glycosides extracted from the Chinese herbs. Previous studies have shown that breviscapine possesses comprehensive pharmacological functions. However, very little is known about whether breviscapine have protective role on cardiac hypertrophy. The aim of the present study was to determine whether breviscapine attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and pressure‐overload‐induced cardiac hypertrophy in mice in vivo. Our data demonstrated that breviscapine (2.5–15 µM) dose‐dependently blocked cardiac hypertrophy induced by Ang II (1 µM) in vitro. The results further revealed that breviscapine (50 mg/kg/day) prevented cardiac hypertrophy induced by aortic banding as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of breviscapine on cardiac hypertrophy is mediated by disrupting PKC‐α‐dependent ERK1/2 and PI3K/AKT signaling. Further studies showed that breviscapine inhibited inflammation by blocking NF‐κB signaling, and attenuated fibrosis and collagen synthesis through abrogating Smad2/3 signaling. Therefore, these findings indicate that breviscapine, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of PKC‐α‐dependent signaling. J. Cell. Biochem. 109: 1158–1171, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Isorhamnetin, a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L., is well known for its anti-inflammatory, anti-oxidative, anti-adipogenic, anti-proliferative, and anti-tumor activities. However, the role of isorhamnetin in cardiac hypertrophy has not been reported. The aims of the present study were to find whether isorhamnetin could alleviate cardiac hypertrophy and to define the underlying molecular mechanisms. Here, we investigated the effects of isorhamnetin (100 mg/kg/day) on cardiac hypertrophy induced by aortic banding in mice. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Our data demonstrated that isorhamnetin could inhibit cardiac hypertrophy and fibrosis 8 weeks after aortic banding. The results further revealed that the effect of isorhamnetin on cardiac hypertrophy was mediated by blocking the activation of phosphatidylinositol 3-kinase–AKT signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes confirmed that isorhamnetin could attenuate cardiomyocyte hypertrophy induced by angiotensin II, which was associated with phosphatidylinositol 3-kinase–AKT signaling pathway. In conclusion, these data indicate for the first time that isorhamnetin has protective potential for targeting cardiac hypertrophy by blocking the phosphatidylinositol 3-kinase–AKT signaling pathway. Thus, our study suggests that isorhamnetin may represent a potential therapeutic strategy for the treatment of cardiac hypertrophy and heart failure.  相似文献   

12.
Sustained cardiac pressure overload induces hypertrophy and pathological remodeling, frequently leading to heart failure. Genetically engineered hyperstimulation of guanosine 3',5'-cyclic monophosphate (cGMP) synthesis counters this response. Here, we show that blocking the intrinsic catabolism of cGMP with an oral phosphodiesterase-5A (PDE5A) inhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction. Sildenafil also reverses pre-established hypertrophy induced by pressure load while restoring chamber function to normal. cGMP catabolism by PDE5A increases in pressure-loaded hearts, leading to activation of cGMP-dependent protein kinase with inhibition of PDE5A. PDE5A inhibition deactivates multiple hypertrophy signaling pathways triggered by pressure load (the calcineurin/NFAT, phosphoinositide-3 kinase (PI3K)/Akt, and ERK1/2 signaling pathways). But it does not suppress hypertrophy induced by overexpression of calcineurin in vitro or Akt in vivo, suggesting upstream targeting of these pathways. PDE5A inhibition may provide a new treatment strategy for cardiac hypertrophy and remodeling.  相似文献   

13.
14.
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease.  相似文献   

15.
Rit, a member of the Ras family of GTPases, has been shown to promote cell survival in response to oxidative stress, in part by directing an evolutionarily conserved p38 MAPK-Akt survival cascade. Aberrant Rit signaling has recently been implicated as a driver mutation in human cancer, adding importance to the characterization of critical Rit effector pathways. However, the mechanism by which Rit-p38 signaling regulated Akt activity was unknown. Here, we identify mTORC2 as a critical downstream mediator of Rit-dependent survival signaling in response to reactive oxygen species (ROS) stress. Rit interacts with Sin1 (MAPKAP1), and Rit loss compromises ROS-dependent mTORC2 complex activation, blunting mTORC2-mediated phosphorylation of Akt kinase. Taken together, our findings demonstrate that the p38/mTORC2/Akt signaling cascade mediates Rit-dependent oxidative stress survival. Inhibition of this previously unrecognized cascade should be explored as a potential therapy of Rit-dependent malignancies.  相似文献   

16.
In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.  相似文献   

17.
18.
In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body beta-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H(2)O(2). Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.  相似文献   

19.
Poly(ADP-ribose) polymerase-1 (PARP), a chromatin-bound enzyme, is activated by cell oxidative stress. Because oxidative stress is also considered a main component of angiotensin II-mediated cell signaling, it was postulated that PARP could be a downstream target of angiotensin II-induced signaling leading to cardiac hypertrophy. To determine a role of PARP in angiotensin II-induced hypertrophy, we infused angiotensin II into wild-type (PARP(+/+)) and PARP-deficient mice. Angiotensin II infusion significantly increased heart weight-to-tibia length ratio, myocyte cross-sectional area, and interstitial fibrosis in PARP(+/+) but not in PARP(-/-) mice. To confirm these results, we analyzed the effect of angiotensin II in primary cultures of cardiomyocytes. When compared with PARP(-/-) cardiomyocytes, angiotensin II (1 microM) treatment significantly increased protein synthesis in PARP(+/+) myocytes, as measured by (3)H-leucine incorporation into total cell protein. Angiotensin II-mediated hypertrophy of myocytes was accompanied with increased poly-ADP-ribosylation of nuclear proteins and depletion of cellular NAD content. When cells were treated with cell death-inducing doses of angiotensin II (10-20 microM), robust myocyte cell death was observed in PARP(+/+) but not in PARP(-/-) myocytes. This type of cell death was blocked by repletion of cellular NAD levels as well as by activation of the longevity factor Sir2alpha deacetylase, indicating that PARP induction and subsequent depletion of NAD levels are the sequence of events causing angiotensin II-mediated cardiomyocyte cell death. In conclusion, these results demonstrate that PARP is a nuclear integrator of angiotensin II-mediated cell signaling contributing to cardiac hypertrophy and suggest that this could be a novel therapeutic target for the management of heart failure.  相似文献   

20.

Aims

Cardiac hypertrophy is elicited by endothelin (ET)-1 as well as other neurohumoral factors, hemodynamic overload, and oxidative stress; HMG-CoA reductase inhibitors (statins) were shown to inhibit cardiac hypertrophy partly via the anti-oxidative stress. One of their common intracellular pathways is the phosphorylation cascade of MEK signaling. Pin1 specifically isomerizes the phosphorylated protein with Ser/Thr-Pro bonds and regulates their activity through conformational changes. There is no report whether the Pin1 activation contributes to ET-1-induced cardiomyocyte hypertrophy and whether the Pin1 inactivation contributes to the inhibitory effect of statins. The aim of this study was to reveal these questions.

Main methods

We assessed neonatal rat cardiomyocyte hypertrophy using ET-1 and fluvastatin by the cell surface area, ANP mRNA expression, JNK and c-Jun phosphorylation, and [3H]-leucine incorporation.

Key findings

Fluvastatin inhibited ET-1-induced increase in the cell surface area, ANP expression, and [3H]-leucine incorporation; and it suppressed the signaling cascade from JNK to c-Jun. The phosphorylated Pin1 level, an inactive form, was decreased by ET-1; however, it reached basal level by fluvastatin. Furthermore, Pin1 overexpression clearly elicited cardiomyocyte hypertrophy, which was inhibited by fluvastatin.

Significance

This is the first report that ET-1-induced cardiomyocyte hypertrophy is mediated through the Pin1 activation and that the inhibitory effect of fluvastatin on cardiomyocyte hypertrophy would partly be attributed to the suppression of the Pin1 function. This study firstly suggests that Pin1 determines the size of hypertrophied cardiomyocyte by regulating the activity of phosphorylated molecules and that statins exert their pleiotropic effects partly via Pin1 inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号