首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
We studied the time-course of the induction of GDP-fucose: asialo GM1 fucosyltransferase and its product, i.e. fucosyl asialo GM1, of the small intestine after introduction of microorganisms to germ-free mice (conventionalization). We found that the fucosyltransferase activity was abruptly induced and asialo GM1 was converted into fucosyl asialo GM1 within a few days after conventionalization. However, two weeks after conventionalization this enzyme activity dropped to approximately 10?2 level of the maximum value and asialo GM1 appeared again as one of the major glycolipids. These results showed that the microbial colonization in the gut evoked a drastic change of the glycolipid pattern at the intestinal epithelial cell-surface via the induction of a fucosyltransferase.  相似文献   

2.
Five major neutral glycolipids, GL-1-GL-5, were isolated from the the mouse small intestine. Their structures and distribution were determined by permethylation analysis, sequential degradation with exoglycosidases and/or immunohistochemistry. The molar ratio of GL-1, GL-2, GL-3, GL-4 and Gl-5 in the whole small intestine was 1:0.04:0.03:0.42:0.02. The structures of GL-1 and GL-4 present in epithelial cells were reported previously to be glucosyl ceramide and asialo GM1, respectively (Umesaki, Y., Suzuki, A., Kasama, T., Tohyama, K., Mutai, M. and Yamakawa, T. (1981) J. Biochem. 90, 1731–1738). GL-5, also present in the epithelial cells, was fucosyl asialo GM1, and fucose was shown to be linked to terminal galactose of asialo GM1 in the manner of α(1–2) bond. GL-2 and GL-3, present in the residual tissue after scraping the mucosa, were determined to be globoside and Forssman glycolipid, respectively. Both globoside and Forssman glycolipid of the non-epithelial tissue had non-hydroxy fatty acid (C16–C24) in combination with sphingosine (C18) as the ceramide components, in contrast with the ceramide structures of the epithelial glycolipids, which contained α-hydroxy fatty acids in combination with phytosphingosine. Immunohistochemical staining using anti-glycolipid antibodies confirmed the distribution of asialo GM1 and fucosyl asialo GM1, and Forssman glycolipid in the epithelial and non-epithelial tissue, respectively.  相似文献   

3.
GDP-fucose:asialo GM1 alpha(1-2)fucosyltransferase (FT) is induced in the small intestinal mucosa after microbial contamination of germ-free mice (Umesaki, Y., Sakata, T. and Yajima, T. (1982) Biochem. Biophys. Res. Commun. 105, 439-443). As a result, asialo GM1 glycolipid, a major component of the epithelial cell membrane, drastically converted into fucosyl asialo GM1. There were many other examples in which FT was induced. One was the weaning period for conventional mice. Others included injuries of the small intestine by punctures or administration of cytosine arabinoside, and the injection of protein synthesis inhibitors, such as cycloheximide or emetine, or the soluble fraction of the small intestinal homogenate (SISF). The induction of FT was more rapid after injection of cycloheximide or SISF than after injury, mechanical puncturing or after administration of cytosine arabinoside. The changes in the neutral glycolipids of the small intestine by injection of cycloheximide or SISF were analyzed in detail. FT activity started to increase after approx. 5 h and reached the maximum 10-12 h after injection of cycloheximide or SISF, and rapidly declined thereafter. The conversion of asialo GM1 into fucosyl asialo GM1 started after about 10 h and reached the maximal value 24 h after the treatment. Fucosyl asialo GM1 persisted for a few days, although the FT activity fell to near the basal level. On the other hand, the amount of glucosyl ceramide was constant after these treatments. There was little difference in the time-courses of both the FT activity and the glycolipid conversion between these treatments. In the case of co-injection of cycloheximide and SISF, the effect of both materials on FT activity induction was synergistic. The distribution of FT activity and immunohistochemical staining using anti-fucosyl asialo GM1 antibody along the crypt-villus axis showed a stronger expression of fucosyl asialo GM1 in villus portion, the post-mitotic cell zone, than in the crypt portion. Asialo GM1 was converted into fucosyl asialo GM1 after the induction of FT by the various treatments mentioned above. Especially the effects of cycloheximide and/or SISF on FT induction suggest at least the presence of a regulatory protein(s) which controls the glycolipid expression in the small intestine.  相似文献   

4.
In ex-germ-free mice conventionalized by association with fecal microorganisms, the induction of major histocompatibility complex class II molecules and fucosylation of asialo GM1 glycolipid occur in the small intestinal epithelial cells (IEC). The intestinal intraepithelial lymphocytes (IEL), especially αβ T-cell receptor-bearing ones, also remarkably expand and show cytolytic activity. In this study, we investigated the immunological and physiological characteristics of the small intestine induced by a kind of indigenous bacteria of the small intestine, segmented filamentous bacteria (SFB), among chloroform-resistant intestinal bacteria. Monoassociation of SFB with germ-free mice was confirmed by the determination of the base sequences of polymerase chain reaction products of 16S rRNA genes of the fecal bacteria of these mice and in situ hybridization using fluorescein-labeled probes based on them. SFB increased the number of αβTCR-bearing IEL and induced Thy-1 expression and cytolytic activity of IEL. The induction of MHC class II molecules and fucosyl asialo GM1 glycolipids and the increases in the mitotic activity and the ratio of the number of columnar cells to those of goblet cells also occurred in the small intestinal epithelial cells on monoassociation of these bacteria. SFB are important indigenous bacteria for the development of the mucosal architecture and immune system in the small intestine, at least in mice.  相似文献   

5.
Mice require testicular glycosphingolipids (GSLs) for proper spermatogenesis. Mutant mice strains deficient in specific genes encoding biosynthetic enzymes of the GSL pathway including Galgt1 (encoding GM2 synthase) and Siat9 (encoding GM3 synthase) have been established lacking various overlapping subsets of GSLs. Although male Galgt1-/- mice are infertile, male Siat9-/- mice are fertile. Interestingly, GSLs thought to be essential for male spermatogenesis are not synthesized in either of these mice strains. Hence, these GSLs cannot account for the different phenotypes. A novel class of GSLs was observed composed of eight fucosylated molecules present in fertile but not in infertile mutant mice. These GSLs contain polyunsaturated very long chain fatty acid residues in their ceramide moieties. GSLs of this class are expressed differentially in testicular germ cells. More importantly, the neutral subset of this new GSL class strictly correlates with male fertility. These data implicate polyunsaturated, fucosylated GSLs as essential for spermatogenesis and male mouse fertility.  相似文献   

6.
The composition of intestinal glycosphingolipids during normal and hormone-perturbed development was investigated. The concentrations of glycosphingolipids of mouse small intestine were affected by the injection of thyroxine or cortisone during suckling and weaning periods. GDla was reduced by the hormonal treatment among major gangliosides, GM3, GM1 and GD1a, of mouse small intestine during the suckling period. In contrast, asialo GM1 was precociously produced by the treatment, which scarcely found in control suckling mouse small intestine. The results showed that these hormones were related to developmental alteration of small-intestinal glycolipids.  相似文献   

7.
Our previous studies demonstrated clearly the presence of asialo GM1 in the intestinal mucosa and microvillus membranes of mouse. The present work demonstrated the distribution of asialo GM1 as well as the entirely complementary distribution of Forssman antigen in the small intestine of mouse by immunofluorescence staining. Clear staining of the brush border and basolateral membranes of epithelial cells, the cell membranes of cryptic cells and also some secretory granules was observed with the purified rabbit anti-asialo GM1 IgG and fluorescence-conjugated goat anti-rabbit IgG. On the other hand, Forssman antigen was demonstrated neither on the brush border membranes nor cryptic membranes, but demonstrated distinctly in the mesenchymal tissue. Such a remarkable difference of distribution of the two glycolipids, which are biosynthesized by different pathways from a common precursor glycolipid (lactosylceramide), indicates that the expression of sugar transferases for elongation of carbohydrate units may be regulated by precise genetic information during organ differentiation.  相似文献   

8.
Before cholesterol and fatty acid molecules in the small intestinal lumen can interact with their possible transporters for uptake and absorption, they must pass through a diffusion barrier, which may modify the kinetics of nutrient assimilation. This barrier includes an unstirred water layer and a surface mucous coat, which is located at the intestinal lumen-membrane interface. In the present study, we investigated whether disruption of the mucin gene (Muc)1 may influence intestinal uptake and absorption of cholesterol and fatty acid in male Muc1(-/-) mice. The wild-type mice displayed relatively high levels of Muc1, Muc2, Muc3, and Muc4 mRNAs and relatively low levels of Muc5ac and Muc5b mRNAs in the small intestine. The absence of Muc1 mRNA and protein in the small intestines of Muc1(-/-) mice confirmed complete knockout of the Muc1 gene, but the mRNA expression for other mucin genes remained unchanged. Intestinal uptake and absorption of cholesterol but not palmitic acid were significantly reduced in Muc1(-/-) mice compared with the wild-type mice. However, knockout of the Muc1 gene did not impair either expression levels of the genes that encode intestinal sterol efflux transporters Abcg5 and Abcg8 and fatty acid transporter Fatp4 or small intestinal transit rates. We conclude that physiological levels of the epithelial mucin produced by the Muc1 gene are necessary for normal intestinal uptake and absorption of cholesterol in mice. Our study implies that because cholesterol absorption efficiency is reduced by approximately 50% in Muc1-deficient mice, there may be one or more additional pathways for cholesterol absorption.  相似文献   

9.
1. Six neutral GSL fractions were purified from porcine erythrocyte membranes. 2. They were identified to be LacCer (14% of total neutral GSLs), 2-hydroxy acid-rich and -poor Gb3Cer (3 and 7%, respectively) and Gb4Cer (71%) by means of NMR spectrometry. 3. Monohexosylceramides (5%) were composed of GlcCer and GalCer with near amount. 4. All these GSL classes contained a high concentration (more than 20% of total acids in each class) of 2-hydroxy fatty acids. 5. GalCer and GlcCer contained considerable amounts of C16- and C18-acids, and of C18-phytosphingosine, whereas C24-acids and C18-sphingosine were predominant in the other GSLs. 6. A minor GSL fraction (less than 1% of total neutral GSLs) which migrated more slowly than Gb5Cer on a thin layer plate and composed of several GSL components contained L-fucose.  相似文献   

10.
The ganglioside composition of the epithelial cells of the small intestine was investigated in 15 strains of inbred rats. Most of these strains had GM3 as the only detectable ganglioside. In addition to GM3, small amounts of GD3 were found in four strains, AVN, BN, DA, and LE. The fatty acid content of the ceramide portion was composed of a large, although variable, percentage of 2-hydroxy fatty acids. The sphingoid base was always C18-4D-hydroxysphinganine. The highly prominent sialic acid was N-glycolylneuraminic acid (NeuGc) in most strains. However in two strains, Brown Norway (BN) and spontaneously hypertensive rats (SHR), NeuAc was the only sialic acid of the gangliosides of the intestinal epithelium. The analysis of the ganglioside composition of the epithelium of the small intestine of the first generation hybrids of SHR with DA and BN, respectively, demonstrated that the expressions of GM3 (NeuGc) and GD3 were genetically transmitted as dominant traits and that BN and SHR were likely to carry the same deficient gene that led to the expression of GM3(NeuAc) instead of GM3(NeuGc) in the small intestine. For comparison, the sialic acid composition of kidney gangliosides was analyzed in some strains. 21-23% of the kidney gangliosides was GM3(NeuGc) in all tested strains, including BN and SHR. Therefore, the ganglioside composition of the intestinal epithelium could vary in the rat species, and the defect of N-glycolylneuraminic acid was not only strain-specific but also occurred in a tissue-specific way among strains of inbred rats.  相似文献   

11.
Supported lipid bilayers (SLBs) are popular models of cell membranes. Owing to the importance of glycosphingolipids (GSLs) in modulating structure and function of membranes and membrane proteins, methods to tune the GSL content in SLBs would be desirable. Glycolipid transfer protein (GLTP) can selectively transfer GSLs between membrane compartments. Using the ganglioside GM1 as a model GSL, and two mass-sensitive and label-free characterization techniques—quartz crystal microbalance with dissipation monitoring and ellipsometry—we demonstrate that GLTP is an efficient and robust biochemical tool to dynamically modulate the GSL content of SLBs up to 10 mol % GM1, and to quantitatively control the GSL content in the bulk-facing SLB leaflet. By exploiting what we believe to be a novel tool, we provide evidence that GM1 distributes highly asymmetrically in silica-supported lipid bilayers, with ∼85% of the ganglioside being present in the bulk-facing membrane leaflet. We report also that the pentameric B-subunit of cholera toxin binds with close-to-maximal stoichiometry to GM1 in SLBs over a large range of GM1 concentrations. Furthermore, we quantify the liganding affinity of GLTP for GM1 in an SLB context to be 1.5 μM.  相似文献   

12.
Tay-Sachs disease (TSD) is a classical glycosphingolipid (GSL) storage disease. Although the genetic and biochemical bases for a massive cerebral accumulation of ganglioside GM2 in TSD have been well established, the mechanism for the neural dysfunction in TSD remains elusive. Upon analysis of GSLs from a variant B TS brain, we have detected a novel GSL that has not been previously revealed. We have isolated this GSL in pure form. Using NMR spectroscopy, mass spectrometry, and chemical synthesis, the structure of this unusual GSL was established to be a taurine-conjugated GM2 (tauro-GM2) in which the carboxyl group of N-acetylneuraminic acid was amidated by taurine. Using a rabbit anti-tauro-GM2 serum, we also detected the presence of tauro-GM2 in three other small brain samples from one variant B and two variant O TSD patients. On the other hand, tauro-GM2 was not found in three normal human brain samples. The presence of tauro-GM2 in TS brains, but not in normal brains, indicates the possible association of this unusual GM2 derivative with the pathogenesis of TSD. Our findings point to taurine conjugation as a heretofore unelucidated mechanism for TS brain to cope with water-insoluble GM2.  相似文献   

13.
The apolipoprotein E gene knockout (apoE-/-) mouse develops atherosclerosis that shares many features of human atherosclerosis. Increased levels of glycosphingolipid (GSL) have been reported in human atherosclerotic lesions; however, GSL levels have not been studied in the apoE-/- mouse. Here we used HPLC methods to analyze serum and aortic GSL levels in apoE-/- and C57BL/6J control mice. The concentrations of glucosyl ceramide (GlcCer), lactosyl ceramide (LacCer), GalNAcbeta1-4Galbeta1-4Glc-Cer (GA2), and ceramide trihexoside (CTH) were increased by approximately 7-fold in the apoE-/- mouse serum compared with controls. The major serum ganglioside, N-glycolyl GalNAcbeta1-4[NeuNAcalpha2-3]Galbeta1-4Glc-Cer (N-glycolyl GM2), was increased in concentration by approximately 3-fold. A redistribution of GSLs from HDL to VLDL populations was also observed in the apoE-/- mice. These changes were accompanied by an increase in the levels of GSLs in the aortic sinus and arch of the apoE-/- mice. The spectrum of gangliosides present in the aortic tissues was more complex than that found in the lipoproteins, with the latter represented almost entirely by N-glycolyl GM2 and the former comprised of NeuNAcalpha2-3Galbeta1-4Glc-Cer (GM3), GM2, N-glycolyl GM2, GM1, GD3, and GD1a. In conclusion, neutral GSL and ganglioside levels were increased in the serum and aortae of apoE-/- mice compared with controls, and this was associated with a preferential redistribution of GSL to the proatherogenic lipoprotein populations. The apoE-/- mouse therefore represents a useful model to study the potential role of GSL metabolism in atherogenesis.  相似文献   

14.
Expression of neutral glycosphingolipids (GSLs) and gangliosides in normal lymphoid tissues and cells has been studied mostly by biochemical and immunochemical analysis of lipid extracts separated by thin-layer chromatography. GSLs and gangliosides involved in the GM1b biosynthetic pathway were assigned to T-lymphocytes, whereas B-cell gangliosides and GSLs have been poorly characterized in former publications. We used specific polyclonal antibodies in immunohistochemistry and flow cytometry to analyze the distribution of globotriaosylceramide (Gb(3)Cer), globoside (Gb(4)Cer), gangliotriaosylceramide (Gg(3)Cer), gangliotetraosylceramide (Gg(4)Cer), and gangliosides GM3 and GalNAc-GM1b in the mouse thymus, spleen, and lymph node. Immature thymocytes expressed epitopes recognized by all antibodies, except for anti-Gb(4)Cer. Mature thymocytes bound only antibodies to GalNAc-GM1b, Gg(4)Cer, and Gb(4)Cer. In secondary lymphoid organs, antibodies to globo-series GSLs bound to vascular spaces of secondary lymphoid organs, whereas the ganglio-series GSL antibodies recognized lymphocyte-containing regions. In a Western blotting analysis, only GalNAc-GM1b antibody recognized a specific protein band in all three organs. Flow cytometric analysis of spleen and lymph node cells revealed that B-cells carried epitopes recognized by all antibodies, whereas the T-cell GSL repertoire was mostly oriented to ganglio-series-neutral GSLs and GM1b-type gangliosides. The results of immunohistochemistry and flow cytometry were not always identical, possibly because of crossreactivity to glycoprotein-linked oligosaccharides and/or differences between cell surface carbohydrate profiles of isolated cells and cells in a tissue environment.  相似文献   

15.
For the electron microscopic identification of asialo GM1-positive cells, fresh-frozen sections fixed with cold acetone and PLP-fixed vibratome sections of adult rat livers were prepared immunocytochemically using the avidin-biotin-peroxidase complex method. Asialo GM1-positive cells were located mainly in the sinusoids, and rarely in Glisson's sheath and portal veins. In the sinusoids, most pit cells, showing the ultrastructural characteristics of large granular lymphocytes (LGL), were positive for asialo GM1 but a few pit cells were asialo GM1-negative. There were several, morphological differences between asialo GM1-positive and -negative pit cells. The asialo GM1-negative pit cells were smaller and had less-developed cell organelles and fewer dense granules, suggesting a more immature stage of development. Almost all the monocytes, segmented neutrophils and eosinophils, and small or large lymphocytes in the sinusoids also showed positive reaction for asialo GM1. In Glisson's sheath, in addition to pit cells and lymphocytes, mast cells were also positive for asialo GM1. In contrast, fixed cells such as liver parenchymal cells, endothelial cells, Kupffer cells and Ito cells within the liver lobules, as well as biliary epithelial cells, smooth muscle cells, fibroblasts, endothelial cells and pericytes in Glisson's sheath were all negative for asialo GM1. Thus, cell surface asialo GM1 expression is not specific for pit cells (LGL) in the rat liver.  相似文献   

16.
Glycosphingolipids (GSLs), present in cell membranes, participate in a variety of biological functions. Although their exact role(s) may not be understood, it has been shown that 1) embryos lacking glucosylceramide synthase activity do not develop normally, 2) GSLs can affect neuritogenesis, and 3) they can function as receptors for some pathogens. To study the role of the saccharide portion of a GSL in any of these functions, it is necessary to either isolate it from the intact GSL or synthesize it. Because syntheses are more complex, modifications were made to the oxidation/elimination procedure previously described for the isolation of the saccharide portion of GM1 and GD1a to enable it to be used with GSLs of varying polarity. The key is to use a mixture of GSLs that differ in polarity. This appears to eliminate problems encountered when purified GSLs such as sulfatide or GT1b are used.  相似文献   

17.
Wang Z  Wen L  Ma X  Chen Z  Yu Y  Zhu J  Wang Y  Liu Z  Liu H  Wu D  Zhou D  Li Y 《Glycobiology》2012,22(7):930-938
Glycosphingolipids (GSLs) are information-bearing biomolecules that play critical roles in embryonic development, signal transduction and carcinogenesis. Previous studies indicate that certain GSLs are associated with differentiation in acute myeloid leukemia (AML) cells. In this study, we collected bone marrow samples from healthy donors and AML patients and analyzed the GSL expression profiles comprehensively using electrospray ionization linear ion-trap mass spectrometry. The results showed that AML patients had higher expression of the GSL lactotriaosylceramide (Lc3), GM3 and neolactotetraosylceramide (nLc4) in their bone marrow than did the healthy donors (P < 0.05), especially the M1 subtype of AML. To further explore the molecular mechanisms of Lc3, we examined the expression of the Lc3 synthase β1,3-N-acetylglucosaminyltransferase5 (β3Gn-T5) and found that the bone marrow samples of AML patients had 16-fold higher expression of β3Gn-T5 than those of healthy donors (P < 0.05). Our results suggest that AML-associated GSLs Lc3, GM3 and nLc4 are possibly involved in initiation and differentiation of AML.  相似文献   

18.
Uptake of energy into cells and its allocation to individual cellular compartments by transporters are essential for tissue homeostasis. The present study gives an analysis of MCT1 expression and its cellular occurrence in the porcine intestine. Tissue portions from duodenum, jejunum, ileum, colon ascendens, colon transversum and colon descendens were collected and prepared for immunohistochemistry, Western blot and real time RT-PCR. A 169bp porcine MCT1 cDNA fragment was amplified and published. MCT1 mRNA expression in the large intestine was 20 fold higher compared to the small intestine. Western blot detected a single protein band of 41kDa at a much higher amount of MCT1 protein in the large intestine vs. the small intestine. MCT1 protein was detected in mitochondrial fractions of the large but not the small intestine. Immunohistochemistry in the small intestine showed that immune cells in the lamina propria and in the lymphoid follicles primarily expressed MCT1 while in the colon epithelial cells were the main source of MCT1. In summary, cellular expression of MCT1 differs between epithelial cells in the colon and small intestine. A possible role of MCT1 for uptake of butyrate into immune cells and the overall role of MCT1 for intestinal immune cell function remains elusive.  相似文献   

19.
Prior studies have demonstrated that sex hormones can influence the glycosphingolipid composition of different organs, including small intestine. However, to date, the effects of testosterone on glycosphingolipids of rat small intestinal mucosa have not been examined. Experiments were conducted to examine the effect of subcutaneous administration of synthetic testosterone (500 micrograms/100 g body wt.) on the gangliosides and neutral glycosphingolipids of rat small intestinal mucosa. Their results demonstrated that testosterone administrations: (i) increased the ganglioside content including hematoside (GM3); (ii) increased the total content of neutral glycosphingolipids, which was due to the increases in glucosylceramide and globotriaosylceramide; (iii) increased the activities of cytidine 5'-monophosphate-N-acetylneuraminic acid: lactosylceramide sialyltransferase, and UDPgalactose: lactosylceramide galactosyltransferase; (iv) increased the percentage of the long chain base phytosphingosine in hematoside, glucosyl-, and globotriaosylceramide; and (v) significantly altered the fatty acid composition of each of these glycosphingolipids. These results demonstrate that administration of testosterone induces alterations in glycosphingolipid composition and glycosyltransferases activities in rat small intestinal mucosa.  相似文献   

20.
We cloned two cDNAs encoding proton/amino acid cotransporters, designated as mPAT1 and mPAT2, from murine tissues. They were identified by sequence similarity to the amino acid/auxin permease family member of lower eukaryotes. We functionally characterized both transporters by flux studies and electrophysiology after expression in Xenopus laevis oocytes. Both mPAT1 and mPAT2 induced a pH-dependent electrogenic transport activity for small amino acids (glycine, alanine, and proline) that is altered by membrane potential. Direct evidence for amino acid/H(+)-symport was shown by intracellular acidification, and a flux coupling stoichiometry for proline/H(+)-symport of 1:1 was determined for both transporters. Besides small apolar L-amino acids, the transporters also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid. The mPAT1 transporter, the murine orthologue of the recently cloned rat LYAAT-1 transporter, can be considered as a low affinity system when compared with mPAT2. The mRNA of mPAT1 is highly expressed in small intestine, colon, kidney, and brain; the mPAT2-mRNA is mainly found in heart and lung. Phenotypically, the PAT1 transporter possesses the same functional characteristics as the previously described proton-dependent amino acid transport process in apical membranes of intestinal and renal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号