首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CDP-diacylglycerol for polyglycerophosphatide biogenesis can be synthesized within rat liver mitochondria. This membrane-associated enzyme was predominantly located in the inner mitochondrial membrane. GTP had a significant effect in activating the microsomal CDP-diacylglycerol synthase, especially if the microsomes were preincubated with GTP in the presence of phosphatidic acid. This stimulatory effect of GTP on the microsomal enzyme was not detected in the mitochondrial fractions. The enzymes could be solubilized from the membrane fractions using CHAPS, and the detergent-soluble activity partially restored by addition of phospholipids. Mitochondrial and microsomal CDP-diacylglycerol synthase activity could be completely separated by anion-exchange column chromatography. The mitochondrial and microsomal CDP-diacylglycerol synthases appear to be two distinct enzymes with different localization and regulatory characteristics.  相似文献   

2.
3.
1. The rate of NADH oxidation catalyzed by intact rat liver mitochondria is greatly stimulated in the presence of oxidized nicotinamide hypoxanthine dinucleotide (NHD+).2. Mitochondrial oxidation of external NHDH is from 20- to 40-fold more rapid than that of NADH, although these coenzymes are oxidized at similar rates by sonicated mitochondria.3. NADH and NADPH inhibit, while NADP+ stimulates NHDH oxidation.4. NHDH oxidation is inhibited by rotenone and CN?.5. NHDH oxidation is coupled to the phosphorylation of ADP to ATP, yielding P:2e? ratios approaching 3.6. These studies indicate that external NHDH is oxidized by the intramito-chondrial respiratory chain NADH dehydrogenase and that the inner mitochondrial membrane is significantly more permeable to NHDH than to NADH. Mammalian liver mitochondria have been reported to catalyze the enzymatic deamination of NAD(H) to NHD(H) [Buniatian, H. C. (1970) in Handbook of Neurochemistry (Lajtha, A., ed.), Vol. 3, pp. 399–411, Plenum Press, London and New York; Movcessian, S. G. and Manassian, R. F. (1967) in Problems of Brain Biochemistry, Vol. 3, pp. 53–66, Academic Press, Yerevan], suggesting a metabolic function for the deaminated analogue. It is concluded that this deamination reaction may be operative in a mechanism for the oxidation of cytoplasmic NADH by the respiratory chain.  相似文献   

4.
5.
Phospholipid synthesis in rat liver mitochondria   总被引:7,自引:0,他引:7  
  相似文献   

6.
7.
8.
9.
The synthesis of proteolipid protein by isolated rat liver mitochondria   总被引:3,自引:0,他引:3  
About 15% of the total (3H)leucine incorporated into protein by isolated rat liver mitochondria invitro could be extracted by chloroform:methanol. This incorporation was inhibited by chloramphenicol and carbomycin, both specific inhibitors of mitochondrial protein synthesis. SDS-gel electrophoresis of the mitochondrial membrane revealed 6–7 labeled bands. Label in the proteolipid fraction was present mainly in a band of 40,000 molecular weight. Several labeled bands observed in gels of the mitochondrial membrane were not removed or changed by extraction with chloroform:methanol suggesting that some, but not all, of the proteins synthesized by rat liver mitochondria are proteolipids.  相似文献   

10.
11.
12.
13.
14.
15.
1. Effect of in vivo treatment (40 mg/kg body wt) with corticosterone on energy metabolism in rat liver mitochondria was examined under acute and chronic conditions in 20-, 35- and 60-day-old rats. 2. Acute treatment did not affect body or liver weight. However, chronic treatment caused increased liver weight in the former two age groups; in the 60-day-old animals the liver weight decreased. 3. Acute treatment resulted in a generalized decrease in state 3 respiration rates and state 4 respiration rates without having any significant effect on ADP/O ratios with glutamate, succinate and ascorbate + TMPD as substrates. However, rates of ATP synthesis decreased significantly. The effect was age-dependent, older animals showed increased resistance. 4. Chronic treatment resulted in uncoupling of oxidative phosphorylation without having significant effects on respiration rates. Once again, the effects were age-dependent. Consequently, the ATP synthesis rates were significantly lowered. However, it was apparent that the underlying mechanisms were entirely different. 5. With succinate as the substrate the state 3 respiration rates increased with age to reach adult values by day 60. The coupling efficiency was also exhibited via maturational changes.  相似文献   

16.
1. Exposure of intact perfused rat liver to EGTA, vasopressin or phenylephrine resulted in a rapid decrease in polysome formation. Pretreatment with phentolamine, an alpha-adrenergic antagonist, blocked the effect of phenylephrine. 2. Hormonal inhibitions of leucine incorporation into protein in isolated hepatocytes and of polysome formation in perfused liver were reversed in the presence of supraphysiologic extracellular Ca2+ concentrations. 3. The beta-adrenergic agonist isoproterenol exerted minimal effects on polysome content. 4. It is proposed that intracellular Ca2+ stores sensitive to hormonal modulation are necessary for maintenance of protein synthesis in hepatocytes.  相似文献   

17.
We have developed a highly efficient DNA-synthesizing system with isolated intact rat liver mitochondria. The ATP requirements for this in organello DNA synthesis are provided by endogenous synthesis in the presence of exogenous ADP and an oxidizable substrate. In this system, mitochondrial DNA synthesis strikingly proceeds at a constant rate for about 5 h at 37 degrees C. Gel electrophoresis, hybridization and restriction enzyme analyses show that intact mitochondria synthesize nucleic acids with a size of 16.5 kb, that correspond to mitochondrial DNA, and that both DNA strands are replicated. This in organello DNA synthesis requires the supply of dNTPs and decreases at high ADP concentration in the incubation medium.  相似文献   

18.
19.
To examine the effect of 50% food restriction over a period of 3 days on mitochondrial energy metabolism, liver mitochondria were isolated from ad libitum and food-restricted rats. Mitochondrial enzyme activities and oxygen consumption were assessed spectrophotometrically and polarographically. With regard to body weight loss (-5%), food restriction decreased the liver to body mass ratio by 7%. Moreover, in food-restricted rats, liver mitochondria displayed diminished state 3 (-30%), state 4-oligomycin (-26%) and uncoupled state (-24%) respiration rates in the presence of succinate. Furthermore, "top-down" elasticity showed that these decreases were due to an inactivation of reactions involved in substrate oxidation. Therefore, it appears that rats not only adapt to food restriction through simple passive mechanisms, such as liver mass loss, but also through decreased mitochondrial energetic metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号