首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Suppressor mutations were identified in Pseudomonas aeruginosa, and a comparison was made with Escherichia coli suppressor systems. A suppressor-sensitive (sus) derivative of a plasmid, RP4 trp, and several Sus mutants of IncP1 plasmid-specific phages, were isolated by using E. coli. Plasmid RP4 trp (sus) was transferred to P. aeruginosa strains carrying trp markers which did not complement RP4 trp(sus), and Trp+ variants were selected. Some, but not all such revertants, could propagate PRD1 Sus phages, and these mutants were found to be supressor positive. Plating efficiencies of various Sus phages on these strains were compared with on E. coli strains carrying known suppressor genes. The results suggested that the Pseudomonas suppressors were probably amber suppressors. In iddition, some Sus phages (PRD1sus-55, PRD1sus-56) were obtained which, although apparently of the amber type for E. coli, were able to propagate equally well on sup+ or sup strains of P. aeruginosa. On the other hand, several mutants of phage PRR1 which were suppressed in E. coli were not suppressed by the P. aeruginosa suppressor. Suppressor-sensitive mutants were also isolated with P. aeruginosa bacteriophages E79 and D3.  相似文献   

3.
IncP plasmid RP1 Tra regions are needed to assemble the receptor for lipid-containing double-stranded DNA bacteriophage PRD1 on the cell surface. Using radioactively labeled phage and electron microscopic techniques, we showed that the surfaces of Salmonella typhimurium(RP1) and Escherichia coli(RP1) cells contained approximately 50 and 20 PRD1 binding sites, respectively. Expression of the receptor was growth phase dependent and was highest at late logarithmic or early stationary phase. The PRD1-resistant RP1 transposon mutants isolated were all Tra-, and the transposons were located in both the Tra1 and Tra2 regions.  相似文献   

4.
Bert Ely 《Genetics》1979,91(3):371-380
The P-type drug resistance factors RP4, RK2, R702, R68.45, and the N-type drug resistance factor R46 are transferred to Caulobacter crescentus at high frequencies. They are stably maintained and their antibiotic resistances are expressed. Experiments with RP4 have shown that intergeneric transfer of RP4 occur at a frequency of 10(-1). C. crescentus strains maintain RP4 as a plasmid, are sensitive to RP4-specific phage, and segregate phage-resistant cells at a frequency of 10(-4) to 10(-5). The RP4 plasmid can be used in several ways: (1) the RP4 plasmid will promote chromosomal exchange between C. crescentus strains at frequencies ranging from 10(-6) to 10(-8); (2) RP4 will promote the transfer of nonconjugative colE1 plasmids from E. coli to C. crescentus; once transferred, the colE1 plasmid is stably maintained under nonselective conditions, can be transferred serially, and segregates independently from RP4; and (3) RP4 can be used to introduce transposons into the C. crescentus chromosome, providing the basis for additional genetic techniques.  相似文献   

5.
RP4-mediated transfer of mobilizable plasmids in intergeneric conjugation of Escherichia coli donors with Corynebacterium glutamicum ATCC 13032 is severely affected by a restriction system in the recipient that can be inactivated by a variety of exogenous stress factors. In this study a rapid test procedure based on intergeneric conjugal plasmid transfer that permitted the distinction between restriction-negative and restriction-positive C. glutamicum clones was developed. By using this procedure, clones of the restriction-deficient mutant strain C. glutamicum RM3 harboring a plasmid library of the wild-type chromosome were checked for their restriction properties. A complemented clone with a restriction-positive phenotype was isolated and found to contain a plasmid with a 7-kb insertion originating from the wild-type chromosome. This plasmid, termed pRES806, is able to complement the restriction-deficient phenotype of different C. glutamicum mutants. Sequence analysis revealed the presence of two open reading frames (orf1 and orf2) on the complementing DNA fragment. The region comprising orf1 and orf2 displayed a strikingly low G+C content and was present exclusively in C. glutamicum strains. Gene disruption experiments with the wild type proved that orf1 is essential for complementation, but inactivation of orf2 also resulted in a small but significant increase in fertility. These results were confirmed by infection assays with the bacteriophage CL31 from Corynebacterium lilium ATCC 15990.  相似文献   

6.
J Haase  E Lanka 《Journal of bacteriology》1997,179(18):5728-5735
TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function.  相似文献   

7.
Isolation of nonsense suppressor mutants in Pseudomonas.   总被引:31,自引:13,他引:18       下载免费PDF全文
A strain of Escherichia coli harboring the drug resistance plasmid RP1 was treated with the mutagen N-methyl-N-nitro-N-nitro-N-nitrosoguanidine, and mutants were isolated in which ampicillin resistance had been lost due to an amber mutation in the plasmid. One of these mutants was again treated, and a strain was isolated in which tetracycline resistance was also lost due to an amber mutation in the plasmid. The plasmid containing amber mutations in the genes amp and tet was named pLM2. This plasmid could be transferred to strains of Pseudomonas aeruginosa, P. phaseolicola, and P. pseudoalcaligenes. Mutants resistant to ampicillin and tetracycline could not be obtained from P. phaseolicola carrying pLM2. However, strains of E. coli, P. aeruginosa, and P. pseudoalcaligenes carrying the plasmid did produce mutants simultaneously resistant to both antibiotics. All of the mutants of E. coli had developed nonsense suppressors since they became phenotypically lac+, although harboring a lac amber mutation, and formed plaques with amber mutants of phages PRR1 and PRD1 that attack organisms carrying RP1. Approximately 20% of the resistant mutants of P. aeruginosa and P. pseudoalcaligenes were sensitive to the amber mutant of PRD1. These mutants were of variable stability and grew somewhat more slowly than their parent strains. One of the suppressor mutants of P. pseudoalcaligenes, designated ERA(pLM2)S4, was used for the isolation of nonsense mutants of bacteriophage PHA6, a virus having a segmented genome of double-stranded ribonucleic acid and an envelope of lipids and proteins.  相似文献   

8.
Many Bacteroides transfer factors are mobilizable in Escherichia coli when coresident with the IncP conjugative plasmid RP4, but not F. To begin characterization and potential interaction between Bacteroides mobilizable transfer factors and the RP4 mating channel, both mutants and deletions of the DNA processing (dtr), mating pair formation (mpf) and traG coupling genes of RP4 were tested for mobilization of Bacteroides plasmid pLV22a. All 10 mpf but none of the four dtr genes were required for mobilization of pLV22a. The RP4 TraG coupling protein (CP) was also required for mobilization of pLV22a, but could be substituted by a C-terminal deletion mutant of the F TraD CP. Potential interactions of the TraG CP with relaxase protein(s) and transfer DNA of both RP4 and pLV22a were assessed. Overlay assays identified productive interactions between TraG and the relaxase proteins of both MbpB and TraI from pLV22a and RP4 respectively. The Agrobacterium Transfer-ImmunoPrecipitation (TrIP) assay also identified an interaction between TraG and both RP4 and pLV22a transfer DNA. Thus, mobilization of the Bacteroides pLV22a in E. coli utilizes both RP4 Mpf and CP functions including an interaction between the relaxosome and the RP4 CP similar to that of cognate RP4 plasmid.  相似文献   

9.
The processes of replication and transposition of Pseudomonas aeruginosa transposable phage D3112 in cells of Escherichia coli (D3112) and E. coli (RP4::D3112) were studied. D3112 genome is a "silent cassette" ("conex-phage"--conditionally expressible) in E. coli cells incubated at 42 degrees C. Two compulsory conditions for D3112 genome expression are incubation at 30 degrees C and the presence in cells of RP4 plasmid. Processes of replication and transposition in E. coli are coupled. RP4 plasmid stimulates D3112 DNA synthesis in E. coli at least by two order of magnitude. In correspondence with this observation is the fact that when Mg2+ is present in high concentration (0.1 M) in a cultural medium, the production of mature phage is enhanced by two order of magnitude in E. coli (RP4::D3112) or in E. coli (D3112, RP4) cells, and is approx. 10(-1)-10(-2) phage per cell. No influence of Mg on phage production is observed in E. coli (D3112) cells.  相似文献   

10.
Plasmids R68.45, RP4, RP4::Mu cts62, RP1ts::Tn10, RP1ts::Tn9, Rts1 and RP41 were transferred into cells of photosynthetic nitrogen-fixation bacterium Rhodopseudomonas sphaeroides from Escherichia coli and Pseudomonas aeruginosa. The transfer of plasmids occurred with high frequency of 10(-1) to 10(-2) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell in all cases. Mobilization of R. sphaeroides 2R chromosome was obtained by RP4 and Rts1 plasmids at a frequency of 10(-7) to 10(-8) per donor cell. Bacteriophage Mu cts62 could be induced from the plasmid DNA in R. sphaeroides 2R cells and was capable of the lytic growth and producing phage progeny. It was demonstrated that an increase in the efficiency of donor chromosomal genes transfer into recipient cells could be achieved in crosses with the donor carrying RP4::Mcts62 plasmid.  相似文献   

11.
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components are essential for Mpf, TraF of Tra1 and 11 Tra2 proteins, TrbB, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -L. The phenotype of defined mutants in each of the Tra2 genes was determined. Each of the genes, except trbK, was found to be essential for RP4-specific plasmid transfer and for mobilization of the IncQ plasmid RSF1010. The latter process did not absolutely require trbF, but a severe reduction of the mobilization frequency occurred in its absence. Transfer proficiency of the mutants was restored by complementation with defined Tra2 segments containing single trb genes. Donor-specific phage propagation showed that traF and each of the genes encoded by Tra2 are involved. Phage PRD1, however, still adsorbed to the trbK mutant strain but not to any of the other mutant strains, suggesting the existence of a plasmid-encoded receptor complex. Strains containing the Tra2 plasmid in concert with traF were found to overexpress trb products as well as extracellular filaments visualized by electron microscopy. Each trb gene and traF are needed for the formation of the pilus-like structures. The trbK gene, which is required for PRD1 propagation and for pilus production but not for DNA transfer on solid media, encodes the RP4 entry-exclusion function. The components of the RP4 Mpf system are discussed in the context of related macromolecule export systems.  相似文献   

12.
Escherichia coli cells and Streptomyces mycelia are able to form close contacts in the absence of a conjugative system which might facilitate intergeneric plasmid transfer without the genes required for mating pair formation (Tra2) of the RP4 plasmid. The same Tra2 genes found to be essential for RP4 plasmid transfer, RSF1010 mobilization, and donor-specific phage propagation in E. coli were also required for intergeneric transfer between E. coli and Streptomyces lividans.  相似文献   

13.
R-plasmid-mediated chromosome mobilization in Bordetella pertussis   总被引:2,自引:0,他引:2  
Antibiotic-resistant and auxotrophic mutants of Bordetella pertussis were isolated. These were used as recipients for the uptake from Escherichia coli of broad-host-range R plasmids R68.45, RP1, and RP1 and RP4 carrying transposons Tn501 and Tn7 respectively. B. pertussis transconjugants from these crosses were used as donors to mobilize StrR, NalR, thr+ and gly+ chromosomal markers to B. pertussis or to B. parapertussis recipient strains. The frequency of plasmid transfer varied and depended on the donor and recipient strains used. Differences in chromosome mobilization frequencies of individual markers were observed and appeared to depend on the presence or absence of transposons Tn501 and Tn7 on the plasmid. Linkage was detected between the gly+ and NalR markers.  相似文献   

14.
A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study.  相似文献   

15.
It has been demonstrated that the genome of phage D3112 of Preudomonas aeruginosa can be transposed into Escherichia coli chromosome as a component of the hybrid plasmid RP4 TcrKms::D3112. Also, transposition of D3112 from E. coli (D3112) chromosome into RP4 plasmid occurs. The phage stimulates the chromosome mobilizing activity of RP4 plasmid, similar to other transposons. E. coli (RP4::D3112) cells were previously shown to form no colonies at 30 degrees C. Auxotrophic mutants and mutants incapable of utilizing different carbohydrates were found among E. coli clones survived after a long incubation at 30 degrees C (at frequencies approximately 10(-3) - 10(-4). These mutants inherited stably the capability to produce D3112 phage. E. coli auxotrophic mutants have arisen indeed as a consequence of phage integration into the E. coli chromosome, since prototrophic transductants derived from these mutants after their treatment with generalized transducing P1 phage have lost the ability to produce D3112 phage. Clones with mutations in Km or Tc genes of RP4 plasmid, occurring at high frequencies (about 3%) were found after introduction of RP4 into E. coli (D3112). These mutant RP4 plasmids carry insertions of D3112 genomes. Clones of E. coli which lost mutant plasmids still produce D3112 and retain their initial auxotrophic mutations.  相似文献   

16.
Plasmid and transposon transfer to Thiobacillus ferrooxidans.   总被引:4,自引:0,他引:4       下载免费PDF全文
J B Peng  W M Yan    X Z Bao 《Journal of bacteriology》1994,176(10):2892-2897
The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred to acidophilic, obligately chemolithotrophic Thiobacillus ferrooxidans from Escherichia coli by conjugation. A genetic marker of kanamycin resistance was expressed in T. ferrooxidans. Plasmid RP4 was transferred back to E. coli from T. ferrooxidans. The broad-host-range IncQ vector pJRD215 was mobilized to T. ferrooxidans with the aid of plasmid RP4 integrated in the chromosome of E. coli SM10. pJRD215 was stable, and all genetic markers (kanamycin/neomycin and streptomycin resistance) were expressed in T. ferrooxidans. By the use of suicide vector pSUP1011, transposon Tn5 was introduced into T. ferrooxidans. The influence of some factors on plasmid transfer from E. coli to T. ferrooxidans was investigated. Results showed that the physiological state of donor cells might be important to the mobilization of plasmids. The transfer of plasmids from E. coli to T. ferrooxidans occurred in the absence of energy sources for both donor and recipient.  相似文献   

17.
Mobilizable shuttle plasmids containing the origin of transfer (oriT) region of plasmid F (IncFI), ColIb-P9 (IncI1), and RP4/RP1 (IncPalpha) were constructed to test the ability of the cognate conjugation system to mediate gene transfer from Escherichia coli to Streptomyces. The conjugative system of the IncPalpha plasmids was shown to be most effective in conjugative transfer, giving peak values of (2.7 +/- 0.2) x 10(-2) S. lividans TK24 exconjugants per recipient cell. To assess whether the mating-pair formation system or the DNA-processing apparatus of the IncPalpha plasmids is crucial in conjugative transfer, an assay with an IncQ-based mobilizable plasmid (RSF1010) specifying its own DNA-processing system was developed. Only the IncPalpha plasmid mobilized the construct to S. lividans indicating that the mating-pair formation system is primarly responsible for the promiscuous transfer of the plasmids between E. coli and Streptomyces. Dynamic of conjugative transfer from E. coli to S. lividans was investigated and exconjugants starting from the first hour of mating were obtained.  相似文献   

18.
We have determined the nucleotide sequence of a small Prevotella intermedia cryptic plasmid, pYHBi1, which consisted of sequences that were highly homologous to the amino acid sequence of the replication and mobilization proteins found in related organisms. We have also demonstrated that chimeric plasmids derived from this P. intermedia native plasmid can be mobilized between Escherichia coli strains by using a broad-host-range E. coli conjugative plasmid, IncP plasmid RP4. The results suggest that pYHBi1 possesses gene(s) responsible for conjugal transfer.  相似文献   

19.
The unique conjugation system of IncHI3 plasmid MIP233   总被引:3,自引:0,他引:3  
D E Bradley 《Plasmid》1986,16(1):63-71
The conjugation system of the IncHI3 plasmid MIP233 was studied using a transfer-derepressed Tn5-insertion mutant. The conjugative pili of this plasmid were short pointed rods resembling rigid pili, with a well-defined modal length. Unlike plasmids with rigid pili, the MIP233 mutant mediated a surface + liquid conjugation system. The pili were serologically different from all known pilus types including H pili, and did not act as receptors for any known pilus-specific bacteriophage. They converted the surface conjugation system of RP4 to a surface + liquid one. Antiserum to pili of the mutant plasmid inhibited transfer of the wild-type plasmid MIP233, demonstrating that it contained only one transfer system.  相似文献   

20.
Site-directed mutations in the relaxase operon of RP4.   总被引:5,自引:4,他引:1       下载免费PDF全文
S P Cole  E Lanka    D G Guiney 《Journal of bacteriology》1993,175(15):4911-4916
Mutations were constructed by site-directed mutagenesis in the relaxase operon of the broad-host-range plasmid RP4. The mutations were constructed in smaller plasmids, recombined into the 60-kb RP4 plasmid, and tested for their ability to transfer. The relaxase operon contains the transfer genes traJ, traH, and traI, which are involved in nicking at the transfer origin to generate the single strand destined to be transferred to the recipient cell. In the first mutant, the C terminus of TraI was truncated, leaving TraH intact. This mutant decreased transfer by approximately 500-fold in Escherichia coli, and the traI mutation could be complemented by a wild-type copy of traI in trans in the donor. The traI mutation similarly decreased transfer between a variety of gram-negative bacteria. A site-specific mutation was made by the polymerase chain reaction-based unique-site mutagenesis procedure to alter the start site of traH. This mutation had no effect on intraspecific E. coli transfer but reduced transfer by up to sevenfold for some gram-negative bacteria. The traH mutation had no effect on plasmid stability. Thus, neither TraH nor the C terminus of TraI is required for conjugative transfer, but both increase mating efficiency in some hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号