首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dynamic changes in gene expression along the rat epididymis   总被引:6,自引:0,他引:6  
  相似文献   

3.
4.
Vasectomy has been shown to affect the pattern of mRNA expression of P34H, a human sperm protein added to the acrosomal cap during epididymal transit. It has been reported that vasectomy alters the histology of the reproductive tract in various species as a result of the increased pressure in the epididymis. The aim of this study was to evaluate if other epididymis-specific mRNAs, which are expressed in different patterns along the duct, are altered by vasectomy as well. We analyzed the expression of P31m (a monkey homologue of human P34H) and three different HE-like (HE-l) mRNAs along the epididymis in the cynomolgus monkey (Macaca fascicularis). Sexually mature cynomolgus monkeys were vasectomized unilaterally; then the epididymides were surgically removed at different time points. The ipsilateral normal epididymis was used as a control. Histomorphometric measurements showed that the height of the epididymal epithelial cells started to be affected only at 14 wk postsurgery. However, Northern blot and in situ hybridization analysis showed that the expression pattern of P31m, HE1, and HE5-like mRNA along the epididymis was not affected by vasectomy. Only the HE2-like mRNA predominantly expressed in the normal corpus epididymidis was significantly lowered 14 wk after vasectomy. Thus, ductal obstruction differentially alters mRNA expression along the epididymis of the cynomolgus monkey.  相似文献   

5.
Rajesh A  Yenugu S 《PloS one》2012,7(3):e32633
The cysteine rich prostate and testis expressed (Pate) proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old), expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.  相似文献   

6.
7.
Previous evidence has shown that sperm maturation is the result of successive events that influence sperm cells as they move through different microenvironments from the caput to the cauda epididymis. The physiological basis for the creation and maintenance of specific microenvironments along the epididymis are poorly understood. Anatomically, the epididymis consists of segments or lobules of epididymal tubule separated by connective tissue septa (CTS). The fact that CTS restrict the diffusion of tracer substances between segments and that certain gene expression patterns are segment-specific suggest that segments may represent functional epididymal units. In this report, we have further investigated epididymal segmentation by focusing on the ability of CTS to limit the effect of biologically relevant molecules, in particular epidermal growth factor (EGF), basic fibroblast growth factor (FGF2), and vascular endothelial growth factor A (VEGFA), in Segments 1 and 2 of the rat epididymis. We have demonstrated that these growth factors activate mitogen-activated kinase (MAPK) in both segments studied and that growth factors injected into the interstitial space of these segments in vivo exhibited a stimulatory effect only in the segment into which they were injected, i.e., MAPK activation was not observed in the adjacent segment. This restricting influence of CTS was abrogated by treatment with collagenase. In addition, we demonstrate the expression of selected forms of these growth factors and their receptors in Segments 1 and 2, and identify potential downstream targets. These results suggest that CTS regulate the trophic influences of growth factors and potentially other paracrine molecules, thus creating functionally separate units within the epididymis.  相似文献   

8.
9.
The mechanisms by which the region-specific expression patterns of clustered genes evolve are poorly understood. The epididymis is an ideal organ to examine this, as it is a highly segmented tissue that differs significantly in structure between closely related species. Here we examined this issue through analysis of the rapidly evolving X-linked reproductive homeobox (Rhox) gene cluster, the largest known homeobox gene cluster in metazoans. In the mouse, we found that most Rhox genes are expressed primarily in the caput region of the epididymis, a site where sperm mature and begin acquiring forward motility. This region-specific expression pattern depends, in part, on the founding member of the Rhox cluster--Rhox5--as targeted mutation of Rhox5 greatly diminishes the expression of several other family members in the caput region. In the rat, Rhox5 expression switches from the caput to the site of sperm storage: the cauda. All Rhox genes under the control of Rhox5 in the mouse epididymis display a concomitant change in their regional expression in the rat epididymis. Our results lead us to propose that widespread changes in the region-specific expression pattern of genes over evolutionary time can be the result of alterations of one or only a few master regulatory genes.  相似文献   

10.
The final maturation of spermatozoa produced in the testis takes place during their passage through the epididymis. In this process, the proteins secreted into the epididymal lumen along with changes in the pH and salt composition of the epididymal fluid cause several biochemical changes and remodeling of the sperm plasma membrane. The Crisp family is a group of cysteine-rich secretory proteins that previously consisted of three members, one of which-CRISP1-is an epididymal protein shown to attach to the sperm surface in the epididymal lumen and to inhibit gamete membrane fusion. In the present paper, we introduce a new member of the Crisp protein family, CRISP4. The new gene was discovered through in silico analysis of the epididymal expressed sequence tag library deposited in the UniGene database. The peptide sequence of CRISP4 has a signal sequence suggesting that it is secreted into the epididymal lumen and might thus interact with sperm. Unlike the other members of the family, Crisp4 is located on chromosome 1 in a cluster of genes encoding for cysteine-rich proteins. Crisp4 is expressed in the mouse exclusively in epithelial cells of the epididymis in an androgen-dependent manner, and the expression of the gene starts at puberty along with the onset of sperm maturation. The identified murine CRISP4 peptide has high homology with human CRISP1, and the homology is higher than that between murine and human CRISP1, suggesting that CRISP4 represents the mouse counterpart of human CRISP1 and could have similar effects on sperm membrane as mouse and human CRISP1.  相似文献   

11.
We previously showed that gad mice, which are deficient for ubiquitin C-terminal hydrolase L1 (UCH-L1), have a significantly increased number of defective spermatozoa, suggesting that UCH-L1 functions in sperm quality control during epididymal maturation. The epididymis is the site of spermatozoa maturation, transport and storage. Region-specific functions along the epididymis are essential for establishing the environment required for sperm maturation. We analyzed the region-specific expression of UCH-L1 and UCH-L3 along the epididymis, and also assessed the levels of ubiquitin, which has specificity for UCH-L1. In wild-type mice, western blot analysis demonstrated a high level of UCH-L1 expression in the caput epididymis, consistent with ubiquitin expression, whereas UCH-L3 expression was high in the cauda epididymis. We also investigated the function of UCH-L1 and UCH-L3 in epididymal apoptosis induced by efferent duct ligation. The caput epididymides of gad mice were resistant to apoptotic stress induced by efferent duct ligation, whereas Uchl3 knockout mice showed a marked increase in apoptotic cells following ligation. In conclusion, the response of gad and Uchl3 knockout mice to androgen withdrawal suggests a reciprocal function of the two UCH enzymes in the caput epididymis.  相似文献   

12.
13.
Summary A well-developed Golgi apparatus and rough and smooth endoplasmic reticulum in the principal cells of the mouse epididymis indicate active protein synthesis. Studies have shown that epididymal secretions are essential for sperm maturation. In a previous study, two wheat-germ agglutinin (WGA)-binding glycoproteins, GP-49 and GP-83, were identified on the surface of mature mouse sperm. In this study, synthesis and secretion of these two glycoproteins were investigated. Apparent WGA-binding was found on the stereocilia and in the apical region of principal cells in the corpus and cauda of epididymis. Post-fixation and pre-embedding cytochemical localization revealed that WGA-binding sites were situated in the Golgi apparatus, multivesicular bodies and stereocilia of principal cells. GP-49 and GP-83 were identified in the Nonidet P-40 homogenates of corpus and cauda epididymidis. In the epididymides of which ductuli efferentes had been ligated for more than 4 weeks, no sperm were found in the lumina of epididymal tubules. WGA-binding sites were present in the corpus and cauda; GP-49 and GP-83 were identified in tissue homogenates of the corpus and cauda as well. These findings suggest that GP-49 and GP-83 of mature sperm may be secreted by the principal cells of the corpus and cauda. These two molecules apparently conjugate to sperm whilst sperm transit through the epididymis.  相似文献   

14.
The luminal environment along the epididymal duct is important for spermatozoal maturation. This environment is unique and created by the blood-epididymal barrier, which is formed by tight and adhering junctions. For the human epididymis, little information exists on the proteins that comprise these junctions. Our objectives were to assess the gene expression profiles in the different segments of the human epididymis and to identify the proteins that make up the blood-epididymal barrier. Using microarrays, we identified 2980 genes that were differentially expressed by at least 2-fold between the various segments. Of the many genes involved in diverse functions, were those that encoded adhesion proteins (cadherins and catenins) and tight junctional proteins (claudins [CLDN] and others). PCR analyses confirmed the microarray data. Immunolocalization of CLDNs 1, 3, 4, 8, and 10 revealed that the localization of CLDNs differed along the epididymis. In all three segments, CLDNs 1, 3, and 4 were localized to tight junctions, along the lateral margins of adjacent principal cells, and at the interface between basal and principal cells. CLDN8 was localized to tight junctions in all three segments, in addition to being localized in the caput along the lateral margins of principal cells, and in the corpus, at the interface between principal and basal cells. CLDN10, tight junction protein 1, and occludin were localized exclusively to tight junctions in all three epididymal segments. These data indicate that the epididymis displays a complex pattern of gene expression, which includes genes that are implicated in the formation of the blood-epididymal barrier, which suggests complex regulation of this barrier.  相似文献   

15.
16.
Sperm Proteome Maturation in the Mouse Epididymis   总被引:1,自引:0,他引:1  
In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes occurring during epididymal transport. We report the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. This study identified 765 proteins that are present in sperm obtained from all three segments. We identified 1766 proteins that are potentially added (732) or removed (1034) from sperm during epididymal transit. Phenotypic analyses of the caput, corpus and cauda sperm proteomes identified 60 proteins that have known sperm phenotypes when mutated, or absent from sperm. Our analysis indicates that as much as one-third of proteins with known sperm phenotypes are added to sperm during epididymal transit. GO analyses revealed that cauda sperm are enriched for specific functions including sperm-egg recognition and motility, consistent with the observation that sperm acquire motility and fertilization competency during transit through the epididymis. In addition, GO analyses revealed that the immunity protein profile of sperm changes during sperm maturation. Finally, we identified components of the 26S proteasome, the immunoproteasome, and a proteasome activator in mature sperm.  相似文献   

17.
The functional maturation of mammalian spermatozoa is accomplished as the cells descend through the highly specialized microenvironment of the epididymis. This dynamic environment is, in turn, created by the combined secretory and absorptive activity of the surrounding epithelium and displays an extraordinary level of regionalization. Although the regulatory network responsible for spatial coordination of epididymal function remains unclear, recent evidence has highlighted a novel role for the RNA interference pathway. Indeed, as noncanonical regulators of gene expression, small noncoding RNAs have emerged as key elements of the circuitry involved in regulating epididymal function and hence sperm maturation. Herein we have employed next generation sequencing technology to profile the genome-wide miRNA signatures of mouse epididymal cells and characterize segmental patterns of expression. An impressive profile of some 370 miRNAs were detected in the mouse epididymis, with a subset of these specifically identified within the epithelial cells that line the tubule (218). A majority of the latter miRNAs (75%) were detected at equivalent levels along the entire length of the mouse epididymis. We did however identify a small cohort of miRNAs that displayed highly regionalized patterns of expression, including miR-204-5p and miR-196b-5p, which were down- and up-regulated by approximately 39- and 45-fold between the caput/caudal regions, respectively. In addition we identified 79 miRNAs (representing ~ 21% of all miRNAs) as displaying conserved expression within all regions of the mouse, rat and human epididymal tissue. These included 8/14 members of let-7 family of miRNAs that have been widely implicated in the control of androgen signaling and the repression of cell proliferation and oncogenic pathways. Overall these data provide novel insights into the sophistication of the miRNA network that regulates the function of the male reproductive tract.  相似文献   

18.
19.
In primates, expression of the EP2 gene is androgen-dependent and epididymis-specific. EP2 mRNA expression was investigated in caput, corpus, and cauda regions of rat epididymis and in 15 other rat tissues. Polymerase chain reaction and Northern analyses showed that rat EP2 is expressed predominantly in the proximal caput epididymidis. EP2 mRNA expression was determined in proximal epididymides from castrated, sham-operated, and efferent duct-ligated rats. In castrated rats, EP2 mRNA decreased to <10% of that in sham-operated rats between Days 3 and 4 postcastration, demonstrating the androgen dependence of EP2 expression. In epididymides ligated unilaterally at the efferent ducts, EP2 mRNA levels were approximately equal to those in the unligated contralateral epididymides or in sham-operated rats, indicating that EP2 expression does not depend on testicular factors. In bilaterally castrated rats, immediate and delayed testosterone replacement showed the dependence of EP2 expression on circulating androgens. Injection of testosterone propionate (TP) on Days 0, 1, 2, and 3 postcastration maintained EP2 mRNA levels approximately equal to those in sham-operated rats. Starting at Day 4 postcastration, daily injection of TP for 7 days restored EP2 mRNA to approximately normal levels. These data indicate for the rat that EP2 is expressed specifically in the proximal caput epididymidis and that its expression depends on circulating androgens but not on testicular factors.  相似文献   

20.
Zhu H  Ma H  Ni H  Ma XH  Mills N  Yang ZM 《Biology of reproduction》2004,70(4):1088-1095
Lipocalin-type prostaglandin D synthase (L-PGDS), a bifunctional protein, is expressed in the male reproductive organs of many species. However, the expression and regulation of L-PGDS in rat are still uncertain. The present study investigated the regionalization and regulation of L-PGDS expression in rat testis and epididymis by in situ hybridization and immunohistochemistry under the conditions of sexual maturation, castration, and ethylene dimethane sulfonate (EDS) treatments. In sexually mature rats, L-PGDS mRNA was weakly expressed only in the testicular peritubular cells, whereas L-PGDS immunostaining was highly detected in the Leydig cells by Day 70 postpartum. During sexual maturation, L-PGDS mRNA expression was highly detected in the caput, corpus, and cauda of the epididymis 70 days after birth. Compared with normal L-PGDS expression in adult epididymis, both L-PGDS mRNA expression and protein immunostaining were significantly reduced in the caput, corpus, and cauda epididymis after castration. Testosterone propionate treatment induced a significant increase of L-PGDS expression in the epididymis of castrated rats. Compared with adult rat epididymis, L-PGDS mRNA and protein expression was down-regulated after EDS treatment. Testosterone propionate treatment could induce an increase of L-PGDS mRNA and protein expression in the epididymis of EDS-treated rats. In conclusion, both castration and EDS treatments caused a significant decrease of L-PGDS expression in the epididymis, whereas testosterone propionate treatment could induce an increase of L-PGDS expression in the epididymis of both castrated and EDS-treated rats, indicating that L-PGDS expression in the rat epididymis can be up-regulated by testosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号