首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishing the diets of marine generalist consumers is difficult, with most studies limited to the use of morphological methods for prey identification. Such analyses rely on the preservation of diagnostic hard parts, which can limit taxonomic resolution and introduce biases. DNA-based analyses provide a method to assess the diets of marine species, potentially overcoming many of the limitations introduced by other techniques. This study compared the effectiveness of morphological and DNA-based analysis for determining the diet of a free-ranging generalist predator, the arrow squid (Nototodarus gouldi). A combined approach was more effective than using either of the methods in isolation. Nineteen unique prey taxa were identified, of which six were found by both methods, 10 were only detected using DNA and three were only identified using morphological methods. Morphological techniques only found 50% of the total number of identifiable prey taxa, whereas DNA-based techniques found 84%. This study highlights the benefits of using a combination of techniques to detect and identify prey of generalist marine consumers.  相似文献   

2.
Accurate identification of species that are consumed by vertebrate predators is necessary for understanding marine food webs. Morphological methods for identifying prey components after consumption often fail to make accurate identifications of invertebrates because prey morphology becomes damaged during capture, ingestion and digestion. Another disadvantage of morphological methods for prey identification is that they often involve sampling procedures that are disruptive for the predator, such as stomach flushing or lethal collection. We have developed a DNA-based method for identifying species of krill (Crustacea: Malacostraca), an enormously abundant group of invertebrates that are directly consumed by many groups of marine vertebrates. The DNA-based approach allows identification of krill species present in samples of vertebrate stomach contents, vomit, and, more importantly, faeces. Utilizing samples of faeces from vertebrate predators minimizes the impact of dietary studies on the subject animals. We demonstrate our method first on samples of Adelie penguin (Pygoscelis adeliae) stomach contents, where DNA-based species identification can be confirmed by prey morphology. We then apply the method to faeces of Adelie penguins and to faeces of the endangered pygmy blue whale (Balaenoptera musculus brevicauda). In each of these cases, krill species consumed by the predators could be identified from their DNA present in faeces or stomach contents.  相似文献   

3.
Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces   总被引:1,自引:0,他引:1  
DNA-based techniques have proven useful for defining trophic links in a variety of ecosystems and recently developed sequencing technologies provide new opportunities for dietary studies. We investigated the diet of Australian fur seals ( Arctocephalus pusillus doriferus ) by pyrosequencing prey DNA from faeces collected at three breeding colonies across the seals' range. DNA from 270 faecal samples was amplified with four polymerase chain reaction primer sets and a blocking primer was used to limit amplification of fur seal DNA. Pooled amplicons from each colony were sequenced using the Roche GS-FLX platform, generating > 20 000 sequences. Software was developed to sort and group similar sequences. A total of 54 bony fish, 4 cartilaginous fish and 4 cephalopods were identified based on the most taxonomically informative amplicons sequenced (mitochondrial 16S). The prevalence of sequences from redbait ( Emmelichthys nitidus ) and jack mackerel ( Trachurus declivis ) confirm the importance of these species in the seals' diet. A third fish species, blue mackerel ( Scomber australasicus ), may be a more important prey species than previously recognised. There were major differences in the proportions of prey DNA recovered in faeces from different colonies, probably reflecting differences in prey availability. Parallel hard-part analysis identified largely the same main prey species as did the DNA-based technique, but with lower species diversity and no remains from cartilaginous prey. The pyrosequencing approach presented significantly expands the capabilities of DNA-based methods of dietary analysis and is suitable for large-scale diet investigations on a broad range of animals.  相似文献   

4.
Diet estimation in marine mammals relies on indirect methods including recovery of prey hard parts from stomachs and feces, quantitative fatty acid signature analysis (QFASA), stable isotope mixing models, and identification of prey DNA in stomach contents and feces. Experimental evidence (9 species/13 studies) shows that digestion strongly influences the proportion and size of otoliths that can be recovered in feces. Number correction factors (NCF) and digestion coefficients have been experimentally determined to reduce the biases in fecal analysis. Correction factors and coefficients have not been determined for diet estimated from stomach contents. QFASA estimates which prey species and amounts must have been eaten to account for the fatty acid composition of the predator. Experimental studies on mammals and seabirds (9 species/10 studies) indicate that accurate estimates of diet can be determined using QFASA. Stable isotope mixing models provide rather coarse taxonomic resolution of diet composition. Prey DNA analysis shows promise as a method to estimate the species composition of diet, but further development and testing is needed to validate its use. Obtaining a representative sample from marine mammal populations is a significant challenge. Therefore, the use of complementary methods is recommended to obtain the most informative results.  相似文献   

5.
Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models.  相似文献   

6.
The objective of the study was to validate and apply DNA-based approaches to describe fish diets. Laboratory experiments were performed to determine the number of hours after ingestion that DNA could be reliably isolated from stomach content residues, particularly with small prey fishes (c. 1 cm, <0·75 g). Additionally, experiments were conducted at different temperatures to resolve temperature effects on digestion rate and DNA viability. The molecular protocol of cloning and sequencing was then applied to the analysis of stomach contents of wild fishes collected from the western basin of Lake Erie, Canada-U.S.A. The results showed that molecular techniques were more precise than traditional visual inspection and could provide insight into diet preferences for even highly digested prey that have lost all physical characteristics.  相似文献   

7.
All methods of diet analysis in marine mammals, including hard part analysis (HPA), have biases affecting the accuracy of prey-species identification and frequency in the estimated diet due to differential consumption, digestion and retention. Using PCR amplification of specific prey DNA with species-specific primers, we developed a DNA-based method that complements HPA and provides an alternative means to detect prey from stomach contents of Harp Seals (Pagophilus groenlandicus). The target size that could be reliably amplified was determined using a digestion time-series of Atlantic Cod (Gadus morhua) tissue in simulated seal stomachs. Various target lengths were trialed using general teleost primers; amplicons of approximately 800 bp or less were consistently obtained. Prey species-specific PCR primers for Atlantic Cod, Arctic Cod (Boreogadus saida) and Capelin (Mallotus villosus) were designed and tested with DNA from the stomach contents of 31 Harp Seals. Amplicons were obtained for all three species-specific primer sets. Amplification results compared with HPA revealed: (i) Atlantic Cod hard parts were found in five stomachs where no Atlantic Cod DNA amplified, suggesting that Atlantic Cod may be over-represented in the estimated diet, (ii) amplification of Arctic Cod DNA occurred for 17 stomachs, including all 12 stomachs with, and five stomachs without, Arctic Cod hard parts, and (iii) Capelin DNA amplified for four of five stomachs with Capelin hard parts and for one stomach without Capelin hard parts. We conclude that PCR amplification of specific prey DNA provides a viable means to complement Harp Seal diet analysis by HPA, but suggest that valuable information for quantitative diet analysis rests in a quantitative PCR approach.  相似文献   

8.
Predator–prey relationships are important ecological interactions, affecting biotic community composition and energy flow through a system, and are of interest to ecologists and managers. Morphological diet analysis has been the primary method used to quantify the diets of predators, but emerging molecular techniques using genetic data can provide more accurate estimates of relative diet composition. This study used sequences from the 18S V9 rRNA barcoding region to identify prey items in the gastrointestinal (GI) tracts of predatory fishes. Predator GI samples were taken from the Black River, Cheboygan Co., MI, USA (n = 367 samples, 12 predator species) during periods of high prey availability, including the larval stage of regionally threatened lake sturgeon (Acipenser fulvescens Rafinesque 1817) in late May/early June of 2015 and of relatively lower prey availability in early July of 2015. DNA was extracted and sequenced from 355 samples (96.7%), and prey DNA was identified in 286 of the 355 samples (80.6%). Prey were grouped into 33 ecologically significant taxonomic groups based on the lowest taxonomic level sequences that could be identified using sequences available on GenBank. Changes in the makeup of diet composition, dietary overlap, and predator preference were analyzed comparing the periods of high and low prey abundance. Some predator species exhibited significant seasonal changes in diet composition. Dietary overlap was slightly but significantly higher during the period of high prey abundance; however, there was little change in predator preference. This suggests that change in prey availability was the driving factor in changing predator diet composition and dietary overlap. This study demonstrates the utility of molecular diet analysis and how temporal variability in community composition adds complexity to predator–prey interactions.  相似文献   

9.
Fish are both consumers and prey, and as such part of a dynamic trophic network. Measuring how they are trophically linked, both directly and indirectly, to other species is vital to comprehend the mechanisms driving alterations in fish communities in space and time. Moreover, this knowledge also helps to understand how fish communities respond to environmental change and delivers important information for implementing management of fish stocks. DNA-based methods have significantly widened our ability to assess trophic interactions in both marine and freshwater systems and they possess a range of advantages over other approaches in diet analysis. In this review we provide an overview of different DNA-based methods that have been used to assess trophic interactions of fish as consumers and prey. We consider the practicalities and limitations, and emphasize critical aspects when analysing molecular derived trophic data. We exemplify how molecular techniques have been employed to unravel food web interactions involving fish as consumers and prey. In addition to the exciting opportunities DNA-based approaches offer, we identify current challenges and future prospects for assessing fish food webs where DNA-based approaches will play an important role.  相似文献   

10.
Accurate information about the diet of large carnivores that are elusive and inhabit inaccessible terrain, is required to properly design conservation strategies. Predation on livestock and retaliatory killing of predators have become serious issues throughout the range of the snow leopard. Several feeding ecology studies of snow leopards have been conducted using classical approaches. These techniques have inherent limitations in their ability to properly identify both snow leopard feces and prey taxa. To examine the frequency of livestock prey and nearly-threatened argali in the diet of the snow leopard, we employed the recently developed DNA-based diet approach to study a snow leopard population located in the Tost Mountains, South Gobi, Mongolia. After DNA was extracted from the feces, a region of ~100 bp long from mitochondrial 12S rRNA gene was amplified, making use of universal primers for vertebrates and a blocking oligonucleotide specific to snow leopard DNA. The amplicons were then sequenced using a next-generation sequencing platform. We observed a total of five different prey items from 81 fecal samples. Siberian ibex predominated the diet (in 70.4% of the feces), followed by domestic goat (17.3%) and argali sheep (8.6%). The major part of the diet was comprised of large ungulates (in 98.8% of the feces) including wild ungulates (79%) and domestic livestock (19.7%). The findings of the present study will help to understand the feeding ecology of the snow leopard, as well as to address the conservation and management issues pertaining to this wild cat.  相似文献   

11.
The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.  相似文献   

12.
Characterizing the diet of large herbivores and the determinants of its variation remains a difficult task in wild species. DNA-based techniques have the potential to complement traditional time-consuming methods based on the microhistology of plant cuticle fragments in fecal or rumen samples. Recently, it has been shown that a short chloroplast DNA fragment, the P6 loop of the trnL (UAA) intron, can act as a minimalist barcode. Here, we used the trnL approach with high-throughput pyrosequencing to study diet from feces in a wild herbivore, the alpine chamois (Rupicapra rupicapra) and showed that the fine resolution in plant determination obtained with this method allows exploring subtle temporal shifts and inter-individual variability in diet composition. First, we built a DNA barcoding database of 475 plants species. Seventy-two percent of plant species can be unambiguously identified to species level, 79% to genus level and 100% to family level using the P6 loop. Second, we analysed 74 feces collected from October to November. Based on 47,896 P6 loop sequences, we identified a total of 110 taxa, 96 in October and 76 in November, with a clear diet shift between October and November. We recognized four and two clusters of feces composition in October and November, respectively, revealing different diet categories among individuals within each month. DNA-based diet analysis is faster and more taxonomically precise than studies based on microhistology, and opens new possibilities for analysing plant-herbivore interactions in the wild.  相似文献   

13.
Amphibians are currently the most threatened group of vertebrates worldwide, and introduced fauna play a major role in their decline. The control of introduced predators to protect endangered species is often based on predation rates derived from diet studies of predators, but prey detection probabilities using different techniques are variable. We measured the detectability of frogs as prey, using morphological and DNA‐based diet analyses, in the stomachs and faeces of four mammal species that have been introduced to many areas of the world. Frogs (Litoria raniformis) were fed to rats (Rattus norvegicus and R. rattus), mice (Mus musculus) and hedgehogs (Erinaceus europaeus). DNA‐based analysis outperformed morphological analysis, increasing the prey detection rate from 2% to 70% in stomachs and from 0% to 53% in faeces. In most cases, utilizing either stomachs or faeces did not affect the success of prey DNA detection; however, using faeces extended the detectability half‐life from 7 to 21 h. This study is the first to measure prey DNA detection periods in mammalian stomachs, and the first to compare prey DNA detection periods in the stomachs and faeces of vertebrates. The results indicate that DNA‐based diet analysis provides a more reliable approach for detecting amphibians as prey and has the potential to be used to estimate the rate of predation by introduced mammals on endangered amphibians.  相似文献   

14.
Reconstructing the diets of pinnipeds by visually identifying prey remains recovered in faecal samples is challenging because of differences in digestion and passage rates of hard parts. Analysing the soft-matrix of faecal material using DNA-based techniques is an alternative means to identify prey species consumed, but published techniques are largely nonquantitative, which limits their usefulness for some applications. We further developed and validated a real-time PCR technique using species-specific mitochondrial DNA primers to quantify the proportion of prey in the diets of Steller sea lions (Eumetopias jubatus), a pinniped species thought to be facing significant diet related challenges in the North Pacific. We first demonstrated that the proportions of prey tissue DNA in mixtures of DNA isolated from four prey species could be estimated within a margin of ~ 12% of the percent in the mix. These prey species included herring Clupea palasii, eulachon Thaleichthyes pacificus, squid Loligo opalescens and rosethorn rockfish Sebastes helvomaculatus. We then applied real-time PCR to DNA extracted from faecal samples obtained from Steller sea lions in captivity that were fed 11 different combinations of herring, eulachon, squid and Pacific ocean perch rockfish (Sebastes alutus), ranging from 7% to 75% contributions per meal (by wet weight). The difference between the average percentage estimated by real-time PCR and the percentage of prey consumed was generally <12% for all diets fed. Our findings indicate that real-time PCR of faecal DNA can detect the approximate relative quantity of prey consumed for complex diets and prey species, including cephalopods and fish.  相似文献   

15.
The diet of the Weddell seal Leptonychotes weddellii at the South Orkney Islands was investigated by the analysis of 44 and 26 faecal samples collected from the beaches of Laurie Island from May 1999 to January 2000 and from October to December 2001, respectively. The diet was diverse and both pelagic and benthic-demersal organisms were represented in the samples. Fish were the most frequent prey of the samples in both seasons, and fish and krill were the most numerous prey items. Octopods predominated by mass in 1999, whereas krill constituted the bulk of the diet in 2001, a fact that was not observed previously. Among fish, Gobionotothen gibberifrons was largely the species that contributed mostly to the diet, whereas pelagic fish could not be identified in the samples. The results are compared with information from other study areas and discussed in relation to the consumption of krill.  相似文献   

16.
The harp seal Pagophilus groenlandicus is a major high trophic level predator in the Barents Sea, and to better understand their function in the Barents Sea ecosystem, we need to understand their foraging behaviour during their most intensive feeding period. We analysed the diet composition and prey preference of 184 harp seals and 94 faeces samples, sampled in the northern Barents Sea (around Svalbard) during the period May–August in 1996, 1997, and 2004–2006. Concurrent with the sampling of seals, prey availability was assessed in one area in 1996 and 1997 and in two areas in 2006 using standard acoustic methods. Our study showed that harp seal diet composition varied significantly both in time (year) and space, and that their diets appeared to be size dependent. Both subadult (<150 cm) and adult seals were associated with pelagic crustaceans (particularly krill), whereas primarily adult seals were associated with fish (capelin, gadoids and flatfish). Krill was the most important prey group (63 %) followed by polar cod (16 %) and other fish species (10 %). The prey preference of harp seals varied in time and space; polar cod was often preferred by the seals whereas krill was commonly consumed in lower proportion than observed in the survey area. Gadoids and capelin had either been exploited in the same or less proportion as observed in the survey sea. This study emphasises the ecological significance of krill as prime food for harp seals during their intensive feeding period in summer.  相似文献   

17.
The application of DNA barcoding to dietary studies allows prey taxa to be identified in the absence of morphological evidence and permits a greater resolution of prey identity than is possible through direct examination of faecal material. For insectivorous bats, which typically eat a great diversity of prey and which chew and digest their prey thoroughly, DNA-based approaches to diet analysis may provide the only means of assessing the range and diversity of prey within faeces. Here, we investigated the effectiveness of DNA barcoding in determining the diets of bat species that specialize in eating different taxa of arthropod prey. We designed and tested a novel taxon-specific primer set and examined the performance of short barcode sequences in resolving prey species. We recovered prey DNA from all faecal samples and subsequent cloning and sequencing of PCR products, followed by a comparison of sequences to a reference database, provided species-level identifications for 149/207 (72%) clones. We detected a phylogenetically broad range of prey while completely avoiding detection of nontarget groups. In total, 37 unique prey taxa were identified from 15 faecal samples. A comparison of DNA data with parallel morphological analyses revealed a close correlation between the two methods. However, the sensitivity and taxonomic resolution of the DNA method were far superior. The methodology developed here provides new opportunities for the study of bat diets and will be of great benefit to the conservation of these ecologically important predators.  相似文献   

18.
Mitochondrial ribosomal DNA is commonly used in DNA-based dietary analyses. In such studies, these sequences are generally assumed to be the only version present in DNA of the organism of interest. However, nuclear pseudogenes that display variable similarity to the mitochondrial versions are common in many taxa. The presence of nuclear pseudogenes that co-amplify with their mitochondrial paralogues can lead to several possible confounding interpretations when applied to estimating animal diet. Here, we investigate the occurrence of nuclear pseudogenes in fecal samples taken from bottlenose dolphins (Tursiops truncatus) that were assayed for prey DNA with a universal primer technique. We found pseudogenes in 13 of 15 samples and 1-5 pseudogene haplotypes per sample representing 5-100% of all amplicons produced. The proportion of amplicons that were pseudogenes and the diversity of prey DNA recovered per sample were highly variable and appear to be related to PCR cycling characteristics. This is a well-sampled system where we can reliably identify the putative pseudogenes and separate them from their mitochondrial paralogues using a number of recommended means. In many other cases, it would be virtually impossible to determine whether a putative prey sequence is actually a pseudogene derived from either the predator or prey DNA. The implications of this for DNA-based dietary studies, in general, are discussed.  相似文献   

19.
The analysis of pinniped scats has been used to quantify their diet, using prey remains to identify species and to estimate the numbers and sizes of prey consumed. There are, however, potential biases involved with scat analysis and, for this method to be used successfully, these biases need to be quantified. Thirty-six Antarctic fur seals ( Arctocephalus gazella ) were fed meals of exclusively either fish, squid, or krill and their scats were collected and analyzed. The major sources of error in the analysis of prey remains from scats were the differential erosion and passage rate of items in relation to their size. However, using simple correction functions, such as those which model otolith erosion, it is possible to reduce these errors. Using plastic beads as dietary markers showed recovery rates were negatively related to their size. Larger squid beaks had lower recovery rates than smaller beaks, but there was no size-related bias in the recovery rates of krill carapaces. Only 33% of the squid beaks and 27% of the otoliths originally fed were recovered from the scats. Recovery rates were greater for squid (77%) and fish (50%) eye lenses and these structures gave a better estimate of numbers eaten. Differences found between experimentally derived and published regression equations (used to calculate prey sizes eaten from prey remains) highlights the need for regression equations based on local prey characteristics, if these are to be used with any success to describe the prey eaten.  相似文献   

20.
DNA-based gut content analysis has become an important tool for unravelling feeding interactions in invertebrate communities under natural conditions. It usually implies killing of the consumer and extracting the DNA from its food, using either the whole animal or its dissected gut. This post-mortem approach, however, is not suitable for investigating the diet of rare or protected species and also prohibits tracking individual dietary preferences as each consumer can provide trophic information only once. Moreover, removing large numbers of consumers from a habitat for analysis might critically change population densities and affect species interactions. Here, we present DNA-based analysis of invertebrate regurgitates, a novel approach to overcome these limitations. Conducting feeding experiments where adult Poecilus cupreus (Coleoptera: Carabidae) were fed with larvae of Amphimallon solstitiale (Coleoptera: Scarabaeidae), we show that detection success in regurgitates compared to samples prepared from whole beetles was similar or significantly enhanced for small/medium and large prey DNA fragments, respectively. Prey DNA detection success remained high in regurgitates stored in ethanol for 21 months at room temperature prior to DNA extraction. We conclude that in those invertebrates where regurgitates can be obtained, examination of food DNA in regurgitates offers many advantages over conventional post-mortem gut content analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号