首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BALB/c mice possess a 5' duplication of the alpha-cardiac actin gene which is associated with abnormal levels of alpha-cardiac and alpha-skeletal actin mRNAs in adult cardiac tissue. This mutation therefore provides a potential tool for the study of the inter-relationship between the striated muscle actins. We have examined the expression of this actin gene pair throughout the development of skeletal and cardiac muscle in BALB/c mice. During embryonic and fetal development, the expression of these two genes is indistinguishable from that in normal mice, as determined by in situ hybridization. A quantitative postnatal study demonstrates that in the hearts of normal mice the level of alpha-cardiac actin mRNA declines, whereas that of alpha-skeletal actin increases. In mutant mice, these trends are exaggerated so that whereas normal mice have 95.8% alpha-cardiac mRNA and 4.2% alpha-skeletal mRNA in the adult heart, BALB/c mice have 52.4 and 47.6% of these mRNAs, respectively. This difference is also reflected at the protein level. In developing skeletal muscle, the expression of these genes follows kinetics similar to that observed in the heart with a decrease in the relative level of alpha-cardiac mRNA as the muscle matures. Cardiac actin mRNA levels are again lower in the mutant mouse, but here the effect is less striking because skeletal actin is the predominant isoform. These results are discussed in the context of the interaction between this actin gene pair in developing and adult striated muscle.  相似文献   

3.
Sequential expression of chicken actin genes during myogenesis   总被引:25,自引:8,他引:17       下载免费PDF全文
Embryonic muscle development permits the study of contractile protein gene regulation during cellular differentiation. To distinguish the appearance of particular actin mRNAs during chicken myogenesis, we have constructed DNA probes from the transcribed 3' noncoding region of the single-copy alpha-skeletal, alpha-cardiac, and beta-cytoplasmic actin genes. Hybridization experiments showed that at day 10 in ovo (stage 36), embryonic hindlimbs contain low levels of actin mRNA, predominantly consisting of the alpha-cardiac and beta-actin isotypes. However, by day 17 in ovo (stage 43), the amount of alpha-skeletal actin mRNA/microgram total RNA increased more than 30-fold and represented approximately 90% of the assayed actin mRNA. Concomitantly, alpha-cardiac and beta-actin mRNAs decreased by 30% and 70%, respectively, from the levels observed at day 10. In primary myoblast cultures, beta-actin mRNA increased sharply during the proliferative phase before fusion and steadily declined thereafter. alpha-Cardiac actin mRNA increased to levels 15-fold greater than alpha-skeletal actin mRNA in prefusion myoblasts (36 h), and remained at elevated levels. In contrast, the alpha-skeletal actin mRNA remained low until fusion had begun (48 h), increased 25-fold over the prefusion level by the completion of fusion, and then decreased at later times in culture. Thus, the sequential accumulation of sarcomeric alpha-actin mRNAs in culture mimics some of the events observed in embryonic limb development. However, maintenance of high levels of alpha-cardiac actin mRNA as well as the transient accumulation of appreciable alpha-skeletal actin mRNA suggests that myoblast cultures lack one or more essential components for phenotypic maturation.  相似文献   

4.
We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated.  相似文献   

5.
6.
Actin is known to be synthesized both during oogenesis and in cleavage-stage embryos in mice. Cytoskeletal beta-actin appears to be the major component, followed by gamma-actin, but the synthesis of alpha-actin has also been inferred from protein electrophoretic patterns. We have studied the expression of cytoskeletal (beta- and gamma-) and sarcomeric (alpha-cardiac and alpha-skeletal) actin genes at the level of the individual mRNAs in blot hybridization experiments using isoform-specific RNA probes. The results show that there are about 2 x 10(4) beta-actin mRNA molecules in the fully grown oocyte; this number drops to about one-half in the egg and less than one-tenth in the late two-cell embryo but increases rapidly during cleavage to about 3 x 10(5) molecules in the late blastocyst. The amount of gamma-actin mRNA is similar to that of beta-actin in oocytes and eggs but only about 40% as much in late blastocysts, indicating a differential accumulation of these mRNAs during cleavage. The developmental pattern of beta- and gamma-actin mRNA provides a striking example of the transition from maternal to embryonic control that occurs at the two-cell stage and involves the elimination of most or all of the maternal actin mRNA. There was no detectable alpha-cardiac or alpha-skeletal mRNA (i.e., less than 1,000 molecules per embryo) at any stage from oocyte to late blastocyst, suggesting that the sarcomeric actin genes are silent during preimplantation development.  相似文献   

7.
Specific DNA fragments complementary to the 3' untranslated regions of the beta-, alpha-cardiac, and alpha-skeletal actin mRNAs were used as in situ hybridization probes to examine differential expression and distribution of these mRNAs in primary myogenic cultures. We demonstrated that prefusion bipolar-shaped cells derived from day 3 dissociated embryonic somites were equivalent to myoblasts derived from embryonic day 11-12 pectoral tissue with respect to the expression of the alpha-cardiac actin gene. Fibroblasts present in primary muscle cultures were not labeled by the alpha-cardiac actin gene probe. Since virtually all of the bipolar cells express alpha-cardiac actin mRNA before fusion, we suggest that the bipolar phenotype may distinguish a committed myogenic cell type. In contrast, alpha-skeletal actin mRNA accumulates only in multinucleated myotubes and appears to be regulated independently from the alpha-cardiac actin gene. Accumulation of alpha- skeletal but not alpha-cardiac actin mRNA can be blocked by growth in Ca2+-deficient medium which arrests myoblast fusion. Thus, the sequential appearance of alpha-cardiac and then alpha-skeletal actin mRNA may result from factors that arise during terminal differentiation. Finally, the beta-actin mRNA was located in both fibroblasts and myoblasts but diminished in content during myoblast fusion and was absent from differentiated myotubes. It appears that in primary myogenic cultures, an asynchronous stage-dependent induction of two different alpha-striated actin mRNA species occurs concomitant with the deinduction of the nonmuscle beta-actin gene.  相似文献   

8.
9.
10.
Tumor necrosis factor inhibits human myogenesis in vitro.   总被引:15,自引:5,他引:10       下载免费PDF全文
We examined the effects of human recombinant tumor necrosis factor-alpha (TNF) on human primary myoblasts. When added to proliferating myoblasts, TNF inhibited the expression of alpha-cardiac actin, a muscle-specific gene whose expression is observed at low levels in human myoblasts. TNF also inhibited muscle differentiation as measured by several parameters, including cell fusion and the expression of other muscle-specific genes, such as alpha-skeletal actin and myosin heavy chain. Muscle cells were sensitive to TNF in a narrow temporal window of differentiation. Northern (RNA) blot and immunofluorescence analyses revealed that human muscle gene expression became unresponsive to TNF coincident with myoblast differentiation. When TNF was added to differentiated myotubes, there was no effect on muscle gene expression. In contrast, TNF-inducible mRNAs such as interferon beta-2 still responded, suggesting that the signal mediated by TNF binding to its receptor had no effect on muscle-specific genes after differentiation.  相似文献   

11.
12.
Cytoplasmic beta- and gamma-actin mRNAs as well as smooth muscle actin mRNAs have been shown to be transiently increased in rat uterus after treatment with the steroid hormone estradiol. A clone isolated as an estradiol-induced message from a lambda-gt10 cDNA library prepared from the mRNA of estrogen-stimulated immature rat uterus was identified as alpha-smooth muscle actin. A single-stranded RNA probe composed mainly of the 3'-untranslated region of this clone, as well as DNA probes derived from the 3'-untranslated regions of other actin genes, were used to study the induction kinetics of different actin isoforms in rat uterus after being stimulated by estradiol. The beta- and gamma-cytoskeletal actins showed an induction peak at 4 h after estradiol administration with 1.4- and 1.8-fold increases, respectively. The smooth muscle actin was maximally increased 2.1-fold at 8-12 h. Messages of alpha-skeletal and alpha-cardiac actins were neither expressed nor induced by estradiol in this tissue. The different induction kinetics of the cytoplasmic and smooth muscle actins suggest that they are regulated by different mechanisms and possibly in different cell types of the uterus.  相似文献   

13.
Actin isoform expression may change during development, and in certain physiological, experimental and pathological situations. It is accepted that during sarcomeric (skeletal and cardiac) muscle development, the alpha-skeletal and alpha-cardiac isoforms of actin accumulate rapidly at the onset of muscle fibre formation, while there is a rapid fall in the expression of nonmuscle (beta and gamma) actin isoforms. Here we show that, before birth, both skeletal and myocardial cells express significant amounts of alpha-smooth muscle actin mRNA and protein. This expression is transient and disappears over the 1-7 days following birth. Our findings show that the program regulating actin isoform expression in sarcomeric muscle development is complex and that alpha-smooth muscle actin participates in this process.  相似文献   

14.
Isolation and characterization of six different chicken actin genes.   总被引:14,自引:4,他引:10       下载免费PDF全文
Genes representing six different actin isoforms were isolated from a chicken genomic library. Cloned actin cDNAs as well as tissue-specific mRNAs enriched in different actin species were used as hybridization probes to group individual actin genomic clones by their relative thermal stability. Restriction maps showed that these actin genes were derived from separate and nonoverlapping regions of genomic DNA. Of the six isolated genes, five included sequences from both the 5' and 3' ends of the actin-coding area. Amino acid sequence analysis from both the NH2- and COOH-terminal regions provided for the unequivocal identification of these genes. The striated isoforms were represented by the isolated alpha-skeletal, alpha-cardiac, and alpha-smooth muscle actin genes. The nonmuscle isoforms included the beta-cytoplasmic actin gene and an actin gene fragment which lacked the 5' coding and flanking sequence; presumably, this region of DNA was removed from this gene during construction of the genomic library. Unexpectedly, a third nonmuscle chicken actin gene was found which resembled the amphibian type 5 actin isoform (J. Vandekerckhove, W. W. Franke, and K. Weber, J. Mol. Biol., 152:413-426). This nonmuscle actin type has not been previously detected in warm-blooded vertebrates. We showed that interspersed, repeated DNA sequences closely flanked the alpha-skeletal, alpha-cardiac, beta-, and type 5-like actin genes. The repeated DNA sequences which surround the alpha-skeletal actin-coding regions were not related to repetitious DNA located on the other actin genes. Analysis of genomic DNA blots showed that the chicken actin multigene family was represented by 8 to 10 separate coding loci. The six isolated actin genes corresponded to 7 of 11 genomic EcoRI fragments. Only the alpha-smooth muscle actin gene was shown to be split by an EcoRI site. Thus, in the chicken genome each actin isoform appeared to be encoded by a single gene.  相似文献   

15.
16.
17.
The substrate specificities of the actin-ADP-ribosylating toxins, Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin were studied by using five different preparations of actin isoforms: alpha-skeletal muscle actin, alpha-cardiac muscle actin, gizzard gamma-smooth muscle actin, spleen beta- and gamma-cytoplasmic actin, and aortic smooth muscle actin containing alpha- and gamma-smooth muscle actin isoforms. C. perfringens iota toxin ADP-ribosylated all actin isoforms tested, whereas C. botulinum C2 toxin did not modify alpha-skeletal muscle actin or alpha-cardiac muscle actin. Spleen beta/gamma-cytoplasmic actin and gizzard gamma-smooth muscle actin were substrates of C. botulinum C2 toxin. In the aortic smooth muscle actin preparation, gamma-smooth muscle actin but not alpha-smooth muscle actin was ADP-ribosylated by C. botulinum C2 toxin. The data indicate that, in contrast to C. perfringens iota toxin, C. botulinum C2 toxin ADP-ribosylates only beta/gamma-cytoplasmic and gamma-smooth muscle actin and suggest that the N-terminal region of actin isoforms define the substrate specificity for ADP-ribosylation by C. botulinum C2 toxin.  相似文献   

18.
A diet of 1% beta-guanidinopropionic acid (beta-GPA) fed to rats for weeks results in decreased muscle adenosine triphosphate and creatine phosphate concentrations (J. Biol. Chem. 249: 1060-1063, 1974), increased activities of selected mitochondrial enzymes (Biochem. J. 232: 125-131, 1985), and atrophied type IIb fibers (Lab. Invest. 33: 151-158, 1975). The hypothesis of the present study was that chronic beta-GPA feeding would increase cytochrome c mRNA in muscle and would decrease alpha-skeletal actin mRNA in type IIb muscle. Data collected supported, in part, the hypothesis. After 22 days of a 1% beta-GPA diet, cytochrome c mRNA was increased 60-67% in muscles with inherently low cytochrome c mRNA but was not altered in muscles with higher cytochrome c mRNA levels. alpha-Skeletal actin mRNA was unchanged in muscles with low and high cytochrome c mRNA after 22 days of 1% beta-GPA. After 66 days of beta-GPA feeding, both cytochrome c mRNA and alpha-skeletal actin mRNA were decreased 18 and 26%, respectively, per unit of total RNA, in white quadriceps muscle. At the same time muscles composed of predominantly type II fibers atrophied 22%, whereas type I muscle size was unaltered. These data suggest that high-energy phosphate levels could play some role in adaptive changes in muscle composition.  相似文献   

19.
We have constructed isotype-specific subclones from the 3' untranslated regions of alpha-skeletal, alpha-cardiac, beta-cytoskeletal, and gamma-cytoskeletal actin cDNAs. These clones have been used as hybridization probes to assay the number and organization of these actin isotypes in the human genome. Hybridization of these probes to human genomic actin clones (Engel et al., Proc. Natl. Acad. Sci. U.S.A. 78:4674-4678, 1981; Engel et al., Mol. Cell. Biol. 2:674-684, 1982) has allowed the unambiguous assignment of the genomic clones to isotypically defined actin subfamilies. In addition, only one isotype-specific probe hybridizes to each actin-containing gene, with a single exception. This result suggests that the multiple actin genes in the human genome are not closely linked. Genomic DNA blots probed with these subclones under stringent conditions demonstrate that the alpha-skeletal and alpha-cardiac muscle actin genes are single copy, whereas the cytoskeletal actins, beta and gamma, are present in multiple copies in the human genome. Most of the actin genes of other mammals are cytoplasmic as well. These observations have important implications for the evolution of multigene families.  相似文献   

20.
We have previously described alterations in the cytoskeletal organization of heart muscle cells (HMC) infected with Trypanosoma cruzi in vitro. Our aim was to investigate whether these changes also affect the regulation of the actin mRNAs during HMC differentiation. Northern blot analysis revealed that alpha-cardiac actin mRNA levels increased during cell differentiation while beta-actin mRNA levels declined. Nonmuscle cells displayed beta-actin mRNA signal localized at the cell periphery, while alpha-cardiac actin mRNA had a perinuclear distribution in myocytes. Trypanosoma cruzi-infected cells showed 50% reduction in alpha-cardiac actin mRNA expression after 72 h of infection. In contrast, beta-actin mRNA levels increased approximately 79% after 48 h of infection. In addition, in situ beta-actin mRNA was delocalized from the periphery into the perinuclear region. These observations support the hypothesis that Trypanosoma cruzi affects actin mRNA regulation and localization through its effect on the cytoskeleton of heart muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号