首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A current discussion on mammography screening is focused on claims of high relative biological effectiveness (RBE) of mammography X rays compared to conventional 200 kV X rays. An earlier assessment in terms of the electron spectra of these radiations has led to the conclusion that the RBE is bound to be less than 2, regardless of specific model assumptions and the microdosimetric properties of electrons. The present study extends this result in terms of the microdosimetric proximity function, t(x), for electrons, which is essentially the spatial auto-correlation function of energy within particle tracks. If pairs of DNA lesions, e.g. chromosome breaks or deletions, bring about the observed damage, the value t(x) determines for a specified radiation the relative frequency of pairs of lesions a distance x apart. The effectiveness of the radiation is thus proportional to an average of the values of t(x) over the distances, x, for which lesions can combine. The analysis suggests that 15 keV electrons can have a low-dose relative biological effectiveness (RBE(M)) of 1.6 relative to 40 keV electrons if the interaction distances do not exceed about 1 micro m. An extension of the concept, the reduced proximity function, t(delta)(x), permits the inclusion of models with an energy threshold, such as delta = 100 eV, 500 eV or 2 keV, for the formation of each of the DNA lesions. This makes it possible to assess the potential impact of the Auger electrons which accompany most photoelectrons, but only a minority of the Compton electrons. It is found that the Auger electrons could make photoelectrons substantially more effective than Compton electrons at energies below 10 keV but not at energies above 15 keV. The conclusions obtained for the RBE of 15 keV electrons relative to 40 keV electrons will be roughly representative of the RBE of mammography X rays relative to conventional 200 kV X rays.  相似文献   

2.
One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE particles suggest that at least part of the cytogenetic damage measured was caused by the delta rays. Much of the energy deposited by the primary HZE particles may result in cell killing and may therefore be "wasted" as far as production of detectable micronuclei is concerned. The role of wasted energy in studies of cancer induction may be important in risk estimates for exposure to HZE particles.  相似文献   

3.
Summary The early-formed xylem of Suaeda monoica Forssk. ex J. F. Gmel (Chenopodiaceae) is temporarily rayless. Vascular rays differentiate during later stages of its xylem ontogeny. The rays in Suaeda are heterogeneous, and some of them are aggregated. The mature xylem of this species is characterized by two unique types of vascular rays: (1) rays with several inside initiation centres of small cells formed by local frequent cell divisions in the cambium, and (2) huge xylem rays with radial phloem strands that are connected to the axial phloem. The spacing of the xylem rays is not even, and possible mechanisms controlling ray spacing are discussed. Our observations indicate that rays do not have an inhibitory zone around them in which ray initiation is prevented. The initiation of radial patterns of small cells which appear like inside rays within a large vascular ray suggests that initiation and spacing of rays is controlled by radial signal flows in relationship with axial signal fluxes.  相似文献   

4.
A procedure is described for computing sedimentation coefficient distributions from the time derivative of the sedimentation velocity concentration profile. Use of the time derivative, (delta c/delta t)r, instead of the radial derivative, (delta c/delta r)t, is desirable because it is independent of time-invariant contributions to the optical baseline. Slowly varying baseline changes also are significantly reduced. An apparent sedimentation coefficient distribution (i.e., uncorrected for the effects of diffusion), g*(s), can be calculated from (delta c/delta t)r as [formula: see text] where s is the sedimentation coefficient, omega is the angular velocity of the rotor, c0 is the initial concentration, r is the radius, rm is the radius of the meniscus, and t is time. An iterative procedure is presented for computing g*(s)t by taking into account the contribution to (delta c/delta t)r from the plateau region to give (delta c/delta t)corr. Values of g*(s)t obtained this way are identical to those of g*(s) calculated from the radial derivative to within the roundoff error of the computations. Use of (delta c/delta t)r, instead of (delta c/delta r)t, results in a significant increase (greater than 10-fold) in the signal-to-noise ratio of data obtained from both the uv photoelectric scanner and Rayleigh optical systems of the analytical ultracentrifuge. The use of (delta c/delta t)r to compute apparent sedimentation coefficient distributions for purposes of boundary analysis is exemplified with an antigen-antibody system.  相似文献   

5.
Membrane electricity as a convertible energy currency for the cell   总被引:4,自引:0,他引:4  
The role of transmembrane electric potential difference (delta psi) in mitochondria, chloroplasts, and bacteria has been considered. Since the electric capacitance of membranes is much lower than the pH buffer capacitance of water phases, delta psi proves to be the primary form of energy produced by generators of electrochemical H+ potential difference (delta mu-H). There are 11 distinct types of delta mu-H-generating systems in coupling membranes, involved in respiratory and light-dependent electron and proton transfer, as well as in ATP and PP1 hydrolysis and synthesis. Bacteriorhodopsin is the simplest delta mu-H generator. However, even in this case, the molecular mechanism of delta psi production remains obscure. Many types of work can be supported by delta mu-H with no ATP involved so that delta mu-H proves to be not only a transient intermediate of oxidative and photosynthetic phosphorylation but also a convertible energy currency for the cell. Among the delta mu-H-supported activities, mechanical work was recently demonstrated. It can be exemplified by the motility systems of (i) flagellar bacteria and (ii) blud--green algae. As was found in multicellular cyanobacteria, delta mu-H can be used for a power transmission over distances as long as 1 mm. It seems to be probable that in large cells of eukaryotes (e.g., in muscle fibers) giant mitochondria may serve as power-transmitting structures. Na+--K+ gradients can be used to stabilize delta mu-H in bacteria. It is suggested that the primary function of unequal distribution of these cations between the microbial cell and the medium is delta mu-H buffering.  相似文献   

6.
Measurements were performed on the 30, 40 and 60-mm 90Sr/Y beta-emitter source trains used in the Novoste Beta-Cath system to determine the dosimetric characteristics of the sources at millimeter distances and provide the necessary TG-60 dosimetry parameters for mapping the dose distributions. These measurements were carried out in a Solid Water phantom where MD-55-2 Gafchromic films were placed in direct contact with a 5 French (F) catheter used for the 30 and 60-mm source trains and a 3.5 F catheter used for a thinner 40-mm source train. The dosimetric analysis was performed according to the AAPM TG-60 formalism. For the 30-mm source train, data were collected with the source axis at distances of 0.41 and 1.19 mm from the film surface, respectively, in order to investigate possible dosimetric effects due to the intrinsic off centering of the source train lumen within the 5 F catheter. Absolute dose rates at 2 mm were determined by calibrating the radiochromic film in a high energy electron beam from a radiotherapy accelerator. The dose rates at a radial distance of 2 mm were found to be within 10% of the values provided by Novoste. Radial dose functions from this study were in good agreement (< or = 10%) with a 30-mm, 90Sr/Y source train dose data generated from C. G. Soares et al. 90Sr/Y single seed data. However, larger differences were observed at distances shorter than 1 mm when compared to radial dose functions from the Novoste Monte Carlo data.  相似文献   

7.
Measured single-event distributions of the specific energy deposited in cylindrical volumes with simulated diameters down to 150 nm for (4)He and (12)C ions with energies of 25 MeV/nucleon and (16)O ions with 21 MeV/nucleon and radial distances up to 12 microm are presented. The mean specific energy per ion , the mean specific energy per target hit z(1)(r), and the relative frequency of target hits nu(r) as a function of radial distance are evaluated and compared with the corresponding quantities of the track structure model of Kiefer and Straaten (Phys. Med. Biol. 31, 1201-1209, 1986). Though there are some discrepancies in the absolute values, the radial dependence of , z(1)(r) and v(r) for (12)C and (16)O ions is reproduced satisfactorily. The model fails to describe the data for (4)He ions. A more detailed comparison of the radial shape of the mean specific energies calculated from the experimental data from the present work and data from the literature reveals a significant projectile charge dependence which is not included in track structure models.  相似文献   

8.
The long-lived radioisotope (36)Cl (half-life: 301,000 years) was measured in granite samples exposed to A-bomb neutrons at distances from 94 to 1,591 m from the hypocenter in Hiroshima, by means of accelerator mass spectrometry (AMS). Measured (36)Cl/Cl ratios decrease from 1.6 x 10(-10) close to the hypocenter to about 1-2 x 10(-13), at a distance of 1,300 m from the hypocenter. At this distance and beyond the measured (36)Cl/Cl ratios do not change significantly and scatter around values of 1-2 x 10(-13). These findings suggest that the (36)Cl had been predominantly produced by thermalized neutrons from the A-bomb via neutron capture on stable (35)Cl, at distances from the hypocenter smaller than about 1,200 m. At larger distances, however, confounding processes induced by cosmic rays or neutrons from the decay of uranium and thorium become important. This hypothesis is theoretically and experimentally supported in a consecutive paper. The results are compared to calculations that are based on the most recent dosimetry system DS02. Close to the hypocenter, measured (36)Cl/Cl ratios are lower than those calculated, while they are significantly higher at large distances from the hypocenter. If the contribution of the cosmic rays and of the neutrons from the decay of uranium and thorium in the sample was subtracted, however, no significant deviation from the DS02 calculations was observed, at those distances. Thus, the Hiroshima neutron discrepancy reported in the literature for (36)Cl for samples from large distances from the hypocenter, i.e., higher measured (36)Cl/Cl ratios than predicted by the previous dosimetry system DS86, was not confirmed.  相似文献   

9.
The regulation of vascular ray differentiation has received limited attention, despite the fact that vascular rays constitute an important part of the secondary body of plants. In this paper we review developmental aspects of the ray system and suggest a general hypothesis for the regulation of ray differentiation and evolution. In studies of ray differentiation, two basic factors should be taken into consideration: 1) the normal gradual increase in ray size in relation to age, distance from the pith, and distance from the young leaves; and 2) the influence of wound effects on the size, structure, and spacing of rays. The relationships between the rate of cambial activity and secondary xylem differentiation are not clearly understood. There are contrasting results on the relationships between ray number and rate of radial growth. The rate of radial growth (= rate of cambial activity) is not the regulating mechanism of ray characteristics. Bünning (1952, 1965) proposed that rays are distributed regularly in the tissue, as the outcome of an inhibitory influence expressed by them. However, Bünning’s hypothesis contradicts a basic feature of the vascular ray system, namely, fusion of rays. Detailed histological studies of the secondary xylem revealed that proximity to and contact with rays plays a major role in the survival of fusiform initials in the cambium (Bannan, 1951, 1953). Such evidence led Ziegler (1964) to suggest that since the cambium is supplied predominantly via the rays, this is an effective feedback regulative system for an equidistant arrangement of the rays. The hypothesis that rays are induced and controlled by a radial signal flow seems to be the best explanation for the structure and spacing of rays. The formation of a polycentric ray—a special case of “ray” initiation inside a vascular ray—supports the idea that radial signal flow occurs within the rays (Lev-Yadun & Aloni, 1991a). This idea is also supported by findings fromQuercus species in which aggregate rays in the xylem disperse naturally in branch junctions and, following partial girdling, leave a longitudinal narrow bridge of cambium and bark as a result of enhanced axial signal flow (of auxin and other growth regulators) (Lev-Yadun & Aloni, 1991b). The longitudinally elongated shape of rays is their response to axial signal flows (mainly the polar auxin flow). Two methods have been used to study the evolution of the ray system: 1) statistical studies of the relationships between vessel and ray characteristics in many species, when vessel characteristics were the evolutionary standard, and 2) comparison of ray characteristics in fossils originating from several geological eras. We suggest that evolution of the ray system reflects changes in the relations between radial and axial signal flows.  相似文献   

10.
Radially restricted linear energy transfer (LET) is a basic physical parameter relevant to radiation biology and radiation protection. In this report a convenient method is presented for the analytical computation of this quantity without the need for complicated simulation. The method uses the energy-re-stricted LETLΔ, as recently redefined in a 1993 ICRU draft document and supplements it by a relatively simple term that represents the energy of fastδ rays lost within distancer from the track core. The method provides a better fit than other models and is valid over the entire range of radial distance from track center to the maximum radial distance traveled by the most energetic secondary electrons.L r computed by this approach differs only a few percent from the values  相似文献   

11.
To further consider the thermochemical method as a useful approach for active transport research and to investigate the characteristic of a proton electrochemical potential (delta mu H+) across the membrane, the energetics of lactose active transport across Escherichia coli membrane vesicles coupled with an artificial electron donor (phenazine methosulfate-ascorbate) has been investigated. The results were compared with those obtained with an enzyme-associated electron donor (lactate dehydrogenase-D-lactate). The oxidation of an electron donor provided the energy necessary for the transport process. The observed higher heat of ascorbate oxidation reaction in the presence of a proton ionophore (carbonyl cyanide m-chlorophenylhydrazone) further confirmed the formation of delta mu H+ across the membrane. Part of the oxidation energy was utilized to form delta mu H+. Comparison of the energetics revealed that the magnitudes of delta Hox (the enthalpy of the oxidation reaction) and delta Hm (the enthalpy of the formation of delta mu H+) in the two energy sources were comparable (-46 kcal/mol of ascorbate to -40 kcal/mol of D-lactate for delta Hox and 9.6 kcal/mol of ascorbate to 14 kcal/mol of D-lactate for delta Hm). Comparable and low value (about 1%) was also found in the free energy transfer (defined by delta Gm/delta Gox) from the oxidation reaction to the formation of delta mu H+. These results, in combination with the close values of delta mu H+ observed in the two systems, suggested that the characteristic of the created delta mu H+ was independent of the energy source. Examination of delta Hm might provide the information on the ratio of the number of protons produced, as 1 mol of two different electron donors was oxidized. The oxidation reaction in the presence of membrane vesicles was discussed.  相似文献   

12.
Delta-ray transport is important in microdosimetric studies, and how Monte Carlo models handle delta electrons using condensed histories is important for accurate simulation. The purpose of this study was to determine how well FLUKA can simulate energy deposition spectra in a tissue-equivalent proportional counter (TEPC) and produce a reliable estimate of delta-ray events produced when a TEPC is exposed to high-energy heavy ions (HZE) like those in the galactic cosmic-ray (GCR) environment. A 1.27-cm spherical TEPC with a low-pressure gas simulating a 1-μm site, typical of the one flown on the ISS, was constructed in FLUKA, and its response was compared to experimental data for an (56)Fe-ion beam at 360 MeV/nucleon. Several narrow beams at different impact parameters were used to explain the response of the same detector exposed to a uniform field of radiation. Additionally, the effect that wall thickness had on the response of the TEPC and the range of delta rays in the tissue-equivalent (TE) wall material was investigated, and FLUKA produced the expected wall effect for primary particles passing outside the sensitive volume. A final comparison to experimental data was made for the simulated TEPCs exposed to various broad beams in the energy range of 200-1000 MeV/nucleon. FLUKA overestimated energy deposition in the gas volume in all cases. The FLUKA results differed from the experimental data by an average of 25.2% for y(F) and 12.4% for y(D). It is suggested that this difference can be reduced by adjusting the FLUKA default ionization potential and density correction factors. Accurate transport codes are desirable because of the high cost of beam time for experimental evaluation of energy deposition spectra produced by HZE ions and the flexibility that calculations offer in the TEPC engineering and design process.  相似文献   

13.
HPLC analyses of condensed thymine irradiated with monochromatic synchrotron ultrasoft X rays in the energy region around nitrogen and oxygen K-shell edges were performed. Cobalt-60 gamma rays were used as a reference radiation. The radiation chemical dose response of each separated thymine decomposition product was also determined. Uracil (U), 5-(hydroxymethyl)uracil (HMU), 5,6-dihydrothymine (DHT), 5-formyluracil (foU) and four main unknown products were found in the HPLC chromatogram of the sample irradiated with ultrasoft X rays in vacuo. Similar spectra of the products were also found in the gamma-ray experiment; however, some unknown products that appeared after elution of the thymine peak were significantly larger than those in the ultrasoft X- ray experiment. This result indicates the difference in radiation quality. The G value of DHT produced by gamma radiation was 10 times larger than those produced by the ultrasoft X- ray photons with energies of 395 and 407 eV corresponding to below and on the nitrogen K-shell edge, respectively. This result suggests that the differences in the photon energy and/ or in the energy spectra of the secondary electron between ultrasoft X rays and gamma rays are causing differences in the process of the radiation chemistry. Moreover, the yields of all the thymine decomposition products induced by 538 eV photons (oxygen K-shell edge) were significantly smaller than those induced by photons around the nitrogen K-shell edge. The K-shell excitation of oxygen in thymine may efficiently promote the production of small thymine fragments susceptible to desorption from the sample.  相似文献   

14.
彭东  王亚丽  杨旭  肖宁 《动物学杂志》2021,56(6):882-890
洞鳅属(Troglonectes Zhang, Zhao & Tang 2016)鱼类为中国特有的小型洞穴淡水鱼类,主要分布在贵州和广西喀斯特地区的地下河流中。2018至2019年在贵州省荔波县境内进行洞穴生物多样性调查时采集到4号洞鳅属标本,经过形态比较,与弱须洞鳅(Troglonectes barbatus)相似;基于线粒体16S rRNA和Cyt b重建的系统发育树及遗传距离分析显示,4号洞鳅属标本与来自模式产地的弱须洞鳅高度支持聚为一支;利用Kimura双参数模型计算基于16S rRNA和Cyt b的遗传距离,这些标本与弱须洞鳅之间的遗传距离分别为0.4%和0.2%,小于洞鳅属物种之间的遗传距离(16S rRNA遗传距离为2.4%,Cyt b遗传距离为6.1%)。本次研究使用16S rRNA和Cyt b分子标记研究洞鳅属部分物种的系统发育关系和遗传距离。综合形态和分子系统发育分析结果,确定采集自贵州省荔波县小七孔景区的4号标本为隶属于鲤形目条鳅科洞鳅属的弱须洞鳅,系贵州省洞穴鱼类新记录种。  相似文献   

15.
A new specially designed analytical function approximating the intracellular action potentials (ICAPs) for calculation of the extracellular potentials (ECAPs) at various radial and axial distances from the active fibre is proposed. 4-Aminopyridine (4-AP) was used to obtain ICAPs with a prolonged repolarization phase in order to investigate the influence of changes in ICAP shape on the ECAPs. From the experimentally recorded ICAPs before and after treatment of frog skeletal muscle fibres with 4-AP, approximated by the new function, the ECAPs were calculated applying the linesource model in a finite fibre. Using this function allowed calculation of the ECAPs at distances not accessible for the experimental recordings. The total ionic current (I i) during the action potential was calculated using the cable equation. Our results showed that the ratio of the first positive to the negative phases of the ECAPs of treated fibres increased at large radial distances (3000 m and more) and the terminal positive phase was asymmetric with an abrupt initial deflection followed by a slow inverse deflection. The calculated ECAPs at various axial distances from the fibre end (cylindrical and conical part) and at radial distances from the fibre membrane ranging from 0 to 5000 m, corresponded in shape to the experimentally recorded potentials of untreated and 4-AP-treated muscle fibres.  相似文献   

16.
Intramonomer fluorescence resonance energy transfer between the donor epsilon-ATP bound to the nucleotide site and the acceptor N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) or 4-dimethylaminophenyl-azophenyl-4'-maleimide bound to Cys-10 in G-actin was measured. The donor-acceptor distance was calculated to be about 40 A. The intermonomer energy transfer in F-actin occurring between epsilon-ADP and DABMI was also measured. The radial coordinate of Cys-10 was calculated to be 25 A based on the helical symmetry of F-actin and the recently calculated radial coordinate of the nucleotide binding site in F-actin i.e. 25 A (Miki, M., Hambly, B. and dos Remedios, C.G. (1986) Biochim. Biophys. Acta 871, 137-141). (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) Corresponding distances separating the donor nucleotide in one monomer from acceptors on Cys-10 in the first and second nearest neighbours in F-actin are 39-40 A and 41-43 A.  相似文献   

17.
The effectiveness of neutrons from a facsimile of the Hiroshima bomb was determined cytogenetically. The "Little-Boy" replica (LBR), assembled at Los Alamos as a controlled nuclear reactor for detailed physical dosimetry, was used. Of special interest, the neutron energy characteristics (including lineal energy) measured 0.74 m from the LBR were remarkably similar to those calculated for the 1945 Hiroshima bomb at 1 to 2 km from the hypocenter, as shown in a companion dosimetric paper (Straume, et al., Radiat. Res. 128, 133-142 (1991)). Thus we examine here the effectiveness of neutrons closely resembling those that the A-bomb survivors received at Hiroshima. Chromosome aberration frequencies were determined in human blood lymphocytes exposed in vitro to graded doses of LBR radiation (97% neutrons, 3% gamma rays). Vials of blood suspended in air at distances up to 2.10 m from the center of the LBR uranium core received doses ranging from 0.02 to 2.92 Gy. The LBR neutrons (E approximately 0.2 MeV) produced 1.18 dicentrics and rings per cell per Gy. They were more effective than the higher-energy fission neutrons (E approximately 1 MeV) commonly used in radiobiology. The maximum RBE (RBEM) of LBR neutrons at low doses is estimated to be 60 to 80 compared to 60Co gamma rays and 22 to 30 compared to 250-kVp X rays. These results provide a quantitative measurement of the biological effectiveness of Hiroshima-like neutrons.  相似文献   

18.
The energetics of D-lactate-driven active transport of lactose in right-side-out Escherichia coli membrane vesicles has been investigated with a microcalorimetric method. Changes of enthalpy (delta Hox), free energy (delta Gox), and entropy (delta Sox) during the D-lactate oxidation reaction in the presence of membrane vesicles are -39.9 kcal, -46.4 kcal, and 22 cal/deg per mole of D-lactate, respectively. The free energy released by this reaction is utilized to form a proton electrochemical potential (delta-microH+) across the membrane. The higher observed heat in the D-lactate oxidation reaction in the presence of carbonylcyanide m-chlorophenylhydrazone (a proton ionophore) supports the postulate that delta-microH+ is formed across the membrane vesicles. Thermodynamic quantities for the formation of delta-microH+ are delta Hm = 14.1 kcal, delta Gm = 0.6 kcal, and delta Sm = 45 cal/deg per mole of D-lactate. The efficiency in the free energy transfer from the oxidation reaction to the formation of delta-microH+ (defined by delta Gm/delta Gox) was 2%, as compared to that in the heat transfer (defined by delta Hm/delta Hox) of 35%. The energetics of the movement of lactose in symport with proton across the membrane as a consequence of the formation of delta-microH+ are delta H1 = -19 kcal, delta G1 = -0.5 kcal, and delta S1 = -62 cal/deg per mole of lactose. No heat of reaction is contributed by lactose movement across the membrane without symport with H+.  相似文献   

19.
The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of 31P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the delta protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of 31P relaxation rates in E.MnADP and E.MnATP yields activation energies (delta E) in the range 6-10 kcal/mol. Thus, the 31P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E.CoADP and E.CoATP exhibit frequency dependence and delta E values in the range 1-2 kcal/mol; i.e., these rates depend upon 31P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 A, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the 1H spin-lattice relaxation rate of the delta protons of arginine in the E.MnADP.Arg complex was also measured at three frequencies (viz., 200, 300, and 470 MHz). These 1H experiments were performed in the presence of sufficient excess of arginine to be observable over the protein background but with MnADP exclusively in the enzyme-bound form so that the enhancement in the relaxation rates of the delta protons of arginine arises entirely from the enzyme-bound complex. Both the observed frequency dependence of these rates and the delta E less than or equal to 1.0 +/- 0.3 kcal/mol indicate that this rate depends on the 1H-Mn(II) distances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In view of recent recommendations on the frequency and the starting age of mammography screening in healthy women, it is desirable to quantify the enhanced relative biological effectiveness (RBE) of mammography X rays compared to hard X rays. While there is little doubt that the former are more potent in inducing biological damage than the latter, the magnitude of the effect is still hotly debated in the literature. We used Monte Carlo simulations and track structure analysis in micrometer and nanometer volumes to investigate differences in distributions of lineal energy and ionization clusters for a range of mammography X-ray qualities. Dose-averaged lineal energies, (yD), in breast tissue for various mammography qualities were found to result in quality factors about 40% higher than unity. Among the various mammography qualities studied, the popular molybdenum/molybdenum target/filter combination was found to have the highest (yD) in 1-microm spheres (about 5.0 keV/microm near the entrance surface of breast tissue). In 10-nm radius spheres, the mean ionization cluster order was found to be about 35% higher in mammography X rays compared to 300 keV electrons (roughly representing 60Co or 192Ir photon radiation). In even smaller spheres (2 nm radius), no significant differences were observed for the mean ionization cluster order between mammography X rays and 300 keV electrons. We conclude that the potential of mammography X rays to induce biological damage is probably not much higher than a factor of two compared to hard X rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号