首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-4 has been shown to act as a growth factor for human T cells. In addition, IL-4 can enhance CTL activity in MLC, but blocks IL-2 induced lymphokine activated killer cell activity in PBL. In our study, the cloning efficiencies, Ag-specific CTL activity and non-MHC-restricted cytotoxicity of CTL clones generated in IL-2 were compared to those generated in IL-4. In a first experiment, T cells were stimulated with the EBV-transformed B cell line JY and cloned 7 days later with feeder cells and either IL-2 or IL-4. In a second experiment, stimulation of the T cells was carried out in the presence of IL-2 plus anti-IL-4 antibodies or IL-4 plus anti-IL-2 antibodies in order to block the effects of IL-4 and IL-2, respectively, produced by the feeder cells. Although the cloning efficiencies in the second experiment were lower than those obtained in the first experiment, the cloning efficiencies obtained with IL-2 or IL-4 were similar in both experiments. The overall proportion of TCR alpha beta+ T cell clones cytotoxic for the stimulator cell JY established in IL-2 or IL-4 were comparable. A striking difference between the clones obtained in IL-2 or IL-4 was that a large proportion of the clones obtained in IL-4 expressed CD4 and CD8 simultaneously, whereas none of the clones isolated in IL-2 were double positive. Also gamma delta+ T cell clones could be established with IL-4 as a growth factor. TCR gamma delta+ T cell clones isolated in either IL-2 or IL-4 were CD4-CD8- or CD4-CD8+, but the proportion of CD4-CD8+ clones isolated in IL-4 was higher. Interestingly, one TCR gamma delta+ clone isolated in IL-2 was CD4+CD8-. Most of the TCR alpha beta+ and TCR gamma delta+ CTL-clones isolated in IL-2 lysed the NK cell sensitive target cell K562. In contrast, only a small proportion of the TCR alpha beta+ or TCR gamma delta+ CTL clones isolated in IL-4, lysed K562. One TCR gamma delta+ T cell clone (CD-124) isolated in IL-4 and subsequently incubated in IL-2 acquired lytic activity against K562.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

3.
Functional heterogeneity among human inducer T cell clones   总被引:12,自引:0,他引:12  
Analysis of mouse CD4+ inducer T cells at the clonal level has established that a dichotomy among CD4+ T cell clones exists with regard to types of lymphokines secreted. Mouse T cell clones designated Th1 have been shown to secrete IL-2 and IFN-gamma, whereas T cell clones designated Th2 have been shown to produce IL-4 but not IL-2 or IFN-gamma. To determine if such a dichotomy in the helper inducer T cell subset occurred in man, we examined a panel of human CD4+ helper/inducer T cell clones for patterns of lymphokine secretion and for functional activity. We identified human T cell clones which secrete IL-4 but not IL-2 or IFN-gamma, and which appeared to correspond to murine Th2 clones. In marked contrast to murine IL-2 secreting Th1 clones which do not produce IL-4 or IFN-gamma, we observed that some human T cell clones secrete IL-2, and IFN-gamma as well as IL-4. Southern blot analysis indicated that these multi-lymphokine-secreting clones represented the progeny of a single T cell. IL-4 secretion did not always correlated with enhanced ability to induce Ig synthesis. Although one T cell clone which secreted IL-2, IL-4, and IFN-gamma could efficiently induce Ig synthesis, another expressed potent cytolytic and growth inhibitory activity for B cells, and was ineffective or inhibitory in inducing Ig synthesis. These results indicate that although the equivalent of murine Th2 type cells appears to be present in man, the simple division of T cells into a Th1 and Th2 dichotomy may not hold true for human T cells.  相似文献   

4.
5.
Altered frequency and function of peripheral invariant NKT (iNKT) cells have been implicated in the regulation of murine and human type 1a diabetes. To examine regulatory cells from the site of drainage of autoinflammatory tissue and autoantigenic T cell priming in diabetes, we directly cloned iNKT cells from human pancreatic draining lymph nodes (PLN). From 451 T cell clones from control and diabetic PLN, we derived 55 iNKT cells by two methods and analyzed function by cytokine secretion. iNKT cell clones isolated from control PLN secreted IL-4 and IFN-gamma upon TCR stimulation. For type 1a diabetic subjects, PLN iNKT cell clones from three samples secreted IFN-gamma and no IL-4. In a rare recent onset diabetic sample with islet-infiltrating CD4+ T cells, the phenotype of PLN iNKT cell clones was mixed. From normal and diabetic PLN, one-third of CD1d tetramer+-sorted T cell clones were reactive with CD1d transfectants or proliferated/secreted cytokine in response to alpha-galactosylceramide-pulsed PBMCs; tetramer-staining T cell clones from diabetic PLN did not secrete IL-4. This is the first report directly examining iNKT cells from lymph nodes draining the site of autoimmunological attack in humans; iNKT cells were altered in cytokine secretion as previously reported for circulating iNKT cells in human type 1a diabetes.  相似文献   

6.
In order to determine the involvement of T-B cell contact vs lymphokine production in mediating B cell cycle entry and progression, Th cell clones "defective" in lymphokine production were cloned. Th-3.1 is one such clone that required IL-2 to produce significant levels of IL-4 and IFN-gamma. Unlike conventional Th clones, Th-3.1 induced B cell proliferation only in the presence of Ag and IL-2. In contrast to the absolute requirement of IL-2 for Th-3.1-induced B cell proliferation, IL-2 was not required for the formation of stable Th-3.1-B cell conjugates or Th-3.1-induced B cell entry into the G1 phase of the cell cycle. In the absence of IL-2 and under conditions that promoted Th-B cell interactions, Th-3.1 induced 10 to 20% of resting B cells to enter G1. B cell entry into the cell cycle was not inhibited by anti-lymphokine mAb or promoted by exogenous lymphokines, suggesting that endogenous lymphokine activity was not required for Th-3.1-induced G0 to G1 transition. The data suggested that the IL-2-independent induction of B cells into G1 by Th-3.1 was a cell contact-dependent event. Direct proof that Th-3.1-B cell contact was necessary for B cell cycle entry was provided by comparative in situ analysis of the RNA synthetic activity and the RNA content of B cells that were in physical contact with Th-3.1 or not in contact with Th-3.1. In situ autoradiography of RNA synthesis illustrated that a high frequency of B cells in contact with Th-3.1 expressed heightened RNA synthetic activity, whereas "bystander" B cells were less frequently induced into cycle. In situ laser cytometry of B cell size and total RNA content showed that B cells in physical contact with Th-3.1 had a higher RNA content and were larger than "bystander" B cells present in the same microcultures. This model system has allowed the dissection of T cell help into IL-2-dependent and IL-2-independent phases. Early cell contact-dependent events and B cell cycle progression into G1 were IL-2 independent, whereas the production of lymphokines (IL-4, IFN-gamma) by Th-3.1 and Th-3.1-induced B cell proliferation was IL-2 dependent.  相似文献   

7.
Recently, functional heterogeneity among Th cells has been recognized. Based on pattern of lymphokine secretion, two mutually exclusive subsets of CD4+ cells have been defined and designated Th1 (secreting IL-2 and IFN-gamma) and Th2 (secreting IL-4 and IL-5). Identification of these subsets was mostly based on the study of long term cultured T cell lines and clones, and little is known about the Th heterogeneity in vivo. In particular, it has been suggested that IL-4 producing cells cannot be detected in vivo or in primary stimulations in vitro unless responder cells had been previously primed. Our data however, indicate that anti-CD3 mediated stimulation can induce T cells isolated from unprimed animals to IL-4 production. An assay system based on the ability of IL-4 to increase Ia expression of B cells present in the environment of activated T cells was found to be more sensitive than detection of secreted IL-4 in the supernatant by conventional bioassays and was used to study IL-4 production by unprimed lymphocytes polyclonally stimulated in vivo and in vitro by anti-CD3 mAb. The results obtained indicate that CD4+ CD8- T cells able to produce IL-4 upon receptor-specific stimulation exist in the preimmune pool of adult animals. Remarkably, these cells can also be stimulated in vivo by treating animals with anti-CD3 mAb, as indicated by the in vivo induction of IL-4 specific mRNA and hyper-Ia expression on B cells. These results indicate that the inability to detect IL-4 in primary cultures is not due to different activation requirements of Th2 cells but may simply result from their lower frequency in unprimed animals.  相似文献   

8.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

9.
Murine CD4+ T cell clones have been classified into at least two subsets, Th1 and Th2, on the basis of their distinct lymphokine secretion profiles and functions. In the present study, we compared the functional responses of Th1 and Th2 clones to Ag presentation by splenic B cells and peritoneal macrophages. Th2 clones secreted IL-4 in response to Ag presented by resting B cells, but their optimal proliferation required the addition of IL-1 or a source of IL-1. The degree of IL-1 dependence varied among the four Th2 clones examined. In contrast, Th1 clones secreted IL-2 and proliferated in response to Ag presented by both B cells and macrophages, without any requirement for exogenous IL-1. Furthermore, the proliferation of Th2 clones in response to Ag presented by splenocytes or macrophages was inhibited by an IL-1R antagonist. These results indicate that IL-1 is an important costimulator for the expansion of the Th2 subset of CD4+ T cells. The different requirements for the proliferation of Th1 and Th2 cells may be responsible for the preferential expansion of one or the other subset under different conditions of immunization.  相似文献   

10.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

11.
Murine IL-10 has been reported originally to be produced by the Th2 subset of CD4+ T cell clones. In this study, we demonstrate that human IL-10 is produced by Th0, Th1-, and Th2-like CD4+ T cell clones after both Ag-specific and polyclonal activation. In purified peripheral blood T cells, low, but significant, levels of IL-10 were found to be produced by the CD4+CD45RA+ population, whereas CD4+CD45RA- "memory" cells secreted 5- to 20-fold higher levels of IL-10. In addition, IL-10 was produced by activated CD8+ peripheral blood T cells. Optimal induction of IL-10 was observed after activation by specific Ag and by the combination of anti-CD3 mAb and the phorbol ester tetradecanoyl phorbol acetate, whereas the combination of calcium ionophore A23187 and 12-O-tetradecanoylphorbol-13-acetate acetate was a poor inducer of IL-10 production. Kinetic studies indicated that IL-10 was produced relatively late as compared with other cytokines. Maximal IL-10 mRNA expression in CD4+ T cell clones and purified peripheral blood T cells was obtained after 24 h, whereas maximal IL-10 protein synthesis occurred between 24 h and 48 h after activation. No differences were observed in the kinetics of IL-10 production among Th0, Th1-, and Th2-like subsets of CD4+ T cell clones. The results indicate a regulatory role for IL-10 in later phases of the immune response.  相似文献   

12.
In the present study, we have investigated the ability of human T cells to secrete IL-2, IL-4, and IFN-gamma. IL-4 and IFN-gamma were quantified with enzymatic immunoassays and IL-2 with a biologic assay by using the murine IL-2-dependent cell line CTLL-2. PBL, stimulated with Con A or with a combination of the phorbol ester 13-O-tetradecanoylphorbol-12-acetate and the Ca2+ ionophore A23187 secreted IL-2, IL-4, and IFN-gamma. The kinetics of the secretion of the three lymphokines was investigated with two CD4+ clones; one (GEO-2) that produced IL-2, IL-4, and IFN-gamma and another (HY640), that produced only IL-2 and IFN-gamma. Significant IL-2, IL-4, and IFN-gamma production was observed after only 8 h of activation. Maximal levels of IL-2 and IL-4 were found 20 h after the onset of the stimulation which subsequently decreased. In contrast, IFN-gamma levels continued to increase in a period up to 40 h and then leveled off. In spite of these differences in secretion, the kinetics of accumulation of mRNA did not differ. The IL-2, IL-4, and IFN-gamma mRNA were detectable 2 h after stimulation and continued to accumulate for a period up to 20 h. In a series of 22 CD4+ clones, 21 were able to secrete all three lymphokines upon stimulation. Almost all CD8+ clones were able to produce IL-2 and IFN-gamma, but only six of the 23 CD8+ T cell clones secreted IL-4. In addition, five CD4+ (allo)antigen-specific T cell clones were tested for IL-2, IL-4, and IFN-gamma secretion upon specific stimulation. Two alloantigen-specific and two tetanus toxoid-specific T cell clones secreted IL-2, IL-4, and IFN-gamma simultaneously, whereas one alloantigen-specific T cell clone secreted IL-2 and IFN-gamma, but not IL-4. A supernatant of the CD4+ T cell clone GEO-2, that contained high levels of IFN-gamma and IL-4, was unable to induce the low affinity receptor for IgE, CD23, on a Burkitt lymphoma cell line. However, after separation of IL-4 from IFN-gamma by using HPLC, the IL-4-containing fraction-induced CD23, which could be blocked by the fraction that contained IFN-gamma and by a polyclonal rabbit anti-IL-4 antiserum. Finally, the partly purified IL-4, that was devoid of IL-2, promoted the growth of the clone GEO-2.  相似文献   

13.
Frequency analysis of CD4+CD8+ T cells cloned with IL-4   总被引:2,自引:0,他引:2  
The coexpression of both CD4 and CD8 molecules on T cells occurs in the peripheral blood at a low frequency and can be generated transiently on CD4+ peripheral blood T cells by treatment with lectin which induces CD8 biosynthesis and cell surface expression. We have cloned T cells in a nonselective fashion from normal subjects in the presence of either IL-2, rIL-4 and IL-2, or rIL-4 and have examined the phenotypic expression of CD4 and CD8. The addition of excess rIL-4 increased the expression of CD8 on the surface of CD4+ T cell clones but did not increase CD4 expression on CD8+ T cell clones. There were three patterns of CD4 and CD8 expression observed: high density CD8 with no CD4 expression; high density CD4 with low CD8 expression; or high density CD4 with higher cell surface CD8 expression which was regulated by the presence of rIL-4. CD4+ T cell clones originally cultured in IL-2 and rIL-4 and subsequently grown in IL-2 alone exhibited decreased expression of the CD8 molecule. The increased expression of CD8 did not correlate with NK activity or lectin-dependent cytotoxicity in an antigen independent system. In addition, rIL-4 alone or in combination with IL-2 appeared to accelerate the growth curve of T cell clones as compared to IL-2 alone. These results show that IL-4 can upregulate CD8 expression on CD4+ T cell clones while not effecting CD4 expression on CD8+ T cell clones. As class I MHC is the ligand for the CD8 molecule, expression of CD8 induced by IL-4 on CD4+ T cells may allow for increased nonspecific cell to cell contact during the course of an inflammatory response.  相似文献   

14.
We have recently reported that various murine T cell clones produce IL-1. Based on this observation we have analyzed in the present study the correlation between the biological functions and the generation of different lymphokines in (T,G)-A--L specific CD4+ clones. One subset of clones--the "helper clones"--were found to provide help to primed B cells, in vitro. These cells could be shown to produce IL-1, IL-2, and B cell stimulatory factor 1 (IL-4) activities and to express mRNA encoding for these three cytokines. The second subset of clones, termed "proliferative clones", were unable to help B cells in vitro but expressed vigorous Ag-dependent proliferations. These cells did not express IL-1, IL-2, or IL-4 activities. They produced another lymphokine(s) which may be granulocyte-macrophage-CSF, or some other factor recognized by the HT2 cell line. This study further substantiates the link between T cell activities and lymphokine repertoire with a special emphasis on the potential role(s) of T cell-derived IL-1.  相似文献   

15.
16.
Limiting dilution analysis was used to estimate the frequency of clonogenic Ag-specific CD4+ T lymphocytes in draining lymph nodes of mice over the course of infection with Leishmania major, and to measure the production of IL-2, IL-3, IL-4, IFN-gamma, and TNF by the resultant clones. Infection of both genetically susceptible BALB/c ("non-healer") and resistant C57BL/6 ("healer") mice resulted in at least a fourfold increase in the frequency (to about 0.3%) and at least a 10-fold increase in the total number of lymph node CD4+ cells that formed clones when cultured with L. major Ag in vitro. At 1 wk after infection, the majority of clones from BALB/c mice secreted IL-4 (precursor frequency 0.15%) and fewer secreted IFN-gamma (0.05%); this pattern remained constant for at least 8 wk after infection. In C57BL/6 mice, however, a high precursor frequency of IL-4-secreting clones was measured in the first 1 to 2 wk when the mice had lesions, but resolution of infection was associated with a decrease in the frequency of IL-4-secreting clones (from 0.13% at 2 wk to 0.03% at 4 wk) and an increase in the frequency of IFN-gamma-secreting clones (from 0.08% to 0.22%). At all stages of infection, most clones from either mouse strain secreted IL-3 and very few secreted TNF. Analysis of PCR-amplified cDNA from draining lymph nodes of infected mice also revealed that IL-4 and IFN-gamma mRNA were expressed in both mouse strains early in infection. IL-4 mRNA was the major species at 2 and 6 wk after infection in BALB/c mice, but declined relative to IFN-gamma mRNA over this time in C57BL/6 lymph nodes. Precursor frequency estimates of lymphokine-secreting CD4+ cells in draining lymph nodes therefore correlated with lymphokine expression patterns in vivo. Analysis of a panel of individual short term clones derived from mice 1 wk after infection revealed marked heterogeneity in lymphokine production patterns. In BALB/c mice, 49% secreted IL-4 without IFN-gamma, 18% secreted IFN-gamma without IL-4, and 14% secreted both IL-4 and IFN-gamma. Similarly in C57BL/6 mice, 39% secreted IL-4, 20% secreted IFN-gamma, and 17% secreted both lymphokines. Many of the clones also produced IL-3 and/or IL-2. Together the data suggest that both IL-4 and IFN-gamma are synthesized early in infection of susceptible and resistant mice as assessed by mRNA and precursor frequency analyses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Lymphokine secretion by in vivo-activated T cells was analyzed at the population and single-cell levels in lymphocytes from mice undergoing an acute allogeneic graft-vs-host reaction (GVHR). Three observations were made. First, constitutive lymphokine production by these cells was very low but could be dramatically up-regulated by TCR ligation. Thus, even when harvested at the peak of the GVHR, fewer than 0.1% of lymphocytes secreted detectable granulocyte-macrophage (GM)-CSF, IFN-gamma, or IL-3 in the first 24 h in vitro, and average production of these lymphokines in bulk cultures was less than 10(-5) U/cell. However, when cultured for 24 h with anti-CD3 antibody under conditions which activated less than 0.1% of normal cells, about 30% of GVHR T cells secreted GM-CSF, IFN-gamma, and/or IL-3, and average production levels were increased by 10(3)- to 10(4)-fold. Together with evidence that host alloantigen-induced lymphokine secretion was 10 to 100 times lower than the anti-CD3 response, these data suggest that physiologic lymphokine synthesis by most T cells is low (less than 10(-18) mol of IL-3 per cell) but can be raised above the threshold of detection by TCR cross-linking. Second, individual GVHR lymphocytes varied markedly in their total and relative production of different lymphokines in response to anti-CD3 stimulation, with some cells secreting IL-3 alone, some secreting IL-3 accompanied by other lymphokines (GM-CSF and/or IFN-gamma), and some secreting other lymphokines without detectable IL-3. Finally, both CD4+ and CD8+ T cells from GVHR mice responded to anti-CD3 antibody by secreting IL-3 and other lymphokines: purified CD4+ cells contained an average of 16% and CD8+ cells an average of 10% anti-CD3-inducible lymphokine-secreting cells. By contrast, only 2 to 3% of cells of either subset formed clones in cultures with host allogeneic cells and IL-2, suggesting that clonogenic alloreactive cells were a minority of the T cells activated in the GVHR.  相似文献   

18.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

19.
PGE2 is a potent inflammatory mediator with profound immune regulatory actions. The present study examined the effects of PGE2 on the activation/proliferation of CD4+ T cells using 37 cloned CD4+ T cell lines. Ten T cell clones sensitive to PGE2 and 10 T cell clones resistant to PGE2, as measured by proliferation in response to anti-CD3 Ab, were selected for comparison. It was found that the PGE2-sensitive T cells were characterized by low production (<200 pg/ml) of both IL-2 and IL-4, while PGE2-resistant T cells secreted high levels (>1000 pg/ml) of IL-2, IL-4, or both. The roles of IL-2 and IL-4 were confirmed by the finding that addition of exogenous lymphokines could restore PGE2-inhibited proliferation, and PGE2-resistant Th1-, Th2-, and Th0-like clones became PGE2 sensitive when IL-2, IL-4, or both were removed using Abs specific for the respective lymphokines. In addition, we showed that the CD45RA expression in PGE2-sensitive T cells was significantly lower than that in PGE2-resistant cells (mean intensity, 1.2 +/- 0.6 vs 7.8 +/- 5.7; p = 0.001). In contrast, CD45RO expression in PGE2-sensitive T cells was significantly higher that that in PGE2-resistant cells (mean intensity, 55.7 +/- 15.1 vs 33.4 +/- 12.9; p = 0.02). In summary, PGE2 predominantly suppressed CD45RA-RO+ CD4+ T cells with low secretion of both IL-2 and IL-4.  相似文献   

20.
This report examines the antigen-specific inhibition of the IL-2-driven proliferation of autoantigen-reactive, human T cells. Human, myelin basic protein (MBP)-reactive CD4+ cell lines and clones were isolated and maintained in culture by use of IL-2 and periodic antigen stimulation. When freshly isolated antigen-presenting cells (APC) were present, MBP induced proliferation of MBP-reactive T cell populations. However, under different culture conditions, MBP reduced the IL-2-driven proliferation of some MBP-reactive T cell populations. The inhibition of IL-2-driven proliferation did not appear to require CD8+ or OKM 1+ cells since these were not detected when inhibition studies were performed at least 9 days after the last restimulation by irradiated APC and MBP. Supraoptimal concentrations of MBP were not required for inhibition of proliferation. Some heterogeneity of response was apparent since MBP inhibited the IL-2-driven proliferation of some T cell clones while for others MBP had either no effect or produced slight enhancement of proliferation. These results demonstrate an antigen-specific, in vitro immune mechanism that reduces the IL-2-dependent proliferation of autoantigen-reactive, human T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号