首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Definition of the biofilm process as one of the types of intercellular bacterial communications is presented. The modern data concerning the structure of the Pseudomonas aeruginosa biofilm matrix and genetic mechanisms necessary for its production are described. Active and passive rejections of biofilm bacteria, which are the basis of bacterial spreading to new surfaces, are discussed. The complexity and chain type of the reactions associated with biofilm formation are emphasized.  相似文献   

2.
细菌分泌胞外多糖附着在物体表面组成一个结构性群体即生物膜,导致对抗生素的强抵抗性和感染的迁延不愈。反过来,已形成的生物膜也可以分散为游离菌,许多环境物质能够促进该分散过程,并且这些物质与抗生素合用对生物膜有强大的对抗作用。从生物膜到浮游菌是个复杂的过程,目前关于铜绿假单胞菌生物膜分散的特征、机制、诱导分子等已经引起了学者的强烈兴趣,随着问题的深入研究必然会给人类治疗生物膜所致的难治性感染带来更大的意义。  相似文献   

3.
目的探讨金属螯合剂依地酸钠(EDTA)对黏液型铜绿假单胞菌(PA)成熟生物膜的杀菌作用和对其结构的影响。方法平板法培养成熟铜绿假单胞菌生物膜,微量肉汤稀释法测量EDTA、环丙沙星的最低抑菌浓度,平板计数法计算EDTA、环丙沙星单独及联合对生物膜菌落数的影响,荧光探针FITC-ConA染细菌胞外多糖、荧光显微镜下观察EDTA作用前后多糖差别,荧光探针SYT09/H标记生物膜内细菌、激光共聚焦显微镜观察结合BF图像结构分析软件(ISA)对EDTA作用前后的生物膜结构参数进行定量分析。结果当EDTA浓度为5MIC时达到对PA生物膜的最大杀菌效应,可使菌落数由10^7CFU/ml降至10^4CFU/ml,0.1MIC、5 MIC的EDTA均可增强环丙沙星对生物膜的杀菌作用,高浓度组效果更明显、使菌落数降至10^2CFU/ml。EDTA作用后荧光显微镜下可见多糖被破坏,明显减少。激光共聚焦显微镜下可见EDTA作用后生物膜死茵比例增加,菌落变稀疏。ISA软件分析结果显示:5MIC的EDTA作用后生物膜厚度(d)由(22.59±4.13)μm降至(8.97±2.45)μm,t=8.515,P〈0.05;AP(区域孔率)由0.89±0.07增加至0.97±0.02,t=-2.653,P〈0.05;ADD(平均扩散距离)由3.08±0.96降至1.59±0.24,t=4.510,P〈0.05;TE(结构熵)由6.25±0.79降至3.02±0.67,t=9.375,P〈0.05;0.1MIC的EDTA效果没有5MIC明显。结论EDTA可以破坏铜绿假单胞菌生物膜的结构,增强抗生素对生物膜杀菌活性。  相似文献   

4.
5.
Cell death in Pseudomonas aeruginosa biofilm development   总被引:12,自引:0,他引:12       下载免费PDF全文
Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids. However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development thereafter, a bacteriophage capable of superinfecting and lysing the P. aeruginosa parent strain was detected in the fluid effluent from the biofilm. The bacteriophage implicated in biofilm killing was closely related to the filamentous phage Pf1 and existed as a prophage within the genome of P. aeruginosa. We propose that prophage-mediated cell death is an important mechanism of differentiation inside microcolonies that facilitates dispersal of a subpopulation of surviving cells.  相似文献   

6.
《Biologicals》2014,42(1):1-7
Pseudomonas aeruginosa is a gram-negative pathogen that has become an important cause of infection, especially in patients with compromised host defense mechanisms. It is frequently related to nosocomial infections such as pneumonia, urinary tract infections (UTIs) and bacteremia. The biofilm formed by the bacteria allows it to adhere to any surface, living or non-living and thus Pseudomonal infections can involve any part of the body. Further, the adaptive and genetic changes of the micro-organisms within the biofilm make them resistant to all known antimicrobial agents making the Pseudomonal infections complicated and life threatening. Pel, Psl and Alg operons present in P. aeruginosa are responsible for the biosynthesis of extracellular polysaccharide which plays an important role in cell–cell and cell–surface interactions during biofilm formation. Understanding the bacterial virulence which depends on a large number of cell-associated and extracellular factors is essential to know the potential drug targets for future studies. Current novel methods like small molecule based inhibitors, phytochemicals, bacteriophage therapy, photodynamic therapy, antimicrobial peptides, monoclonal antibodies and nanoparticles to curtail the biofilm formed by P. aeruginosa are being discussed in this review.  相似文献   

7.
Cells of Pseudomonas aeruginosa were adhered to polymethyl methacrylate, polyvinyl acetate, polyvinyl chloride, polyhydroxyethyl methacrylate, mixed-acrylic, silicone, and natural latex materials. Planktonic bacteria and bacteria that adhered to the test materials were compared for their uptake of either L-[3,4,5-3H] leucine or [methyl-3H] thymidine during growth in a minimal medium. Leucine incorporation was reduced and thymidine uptake was negligible in adherent bacteria for up to 8 h following primary attachment by which time cells in the planktonic state showed active uptake of both substrates. These reduced uptake periods correlated with lag phases of growth of adherent cells as determined with a sonication-release plate count procedure and analyses of adenosine triphosphate (ATP). The extent of the lag phase of the adherent populations was dependent on initial densities of adhered cells and the nature of the substratum. Received 02 December 1998/ Accepted in revised form 25 April 1999  相似文献   

8.
目的 评估银染法鉴定铜绿假单胞菌生物被膜的效果.方法 体外平板法制备铜绿假单胞菌生物被膜模型,用银染法观察鉴定.结果 银染后普通光学显微镜和扫描电镜观察铜绿假单胞菌生物被膜.结论 银染法鉴定铜绿假单胞菌生物被膜简单可靠.  相似文献   

9.
Role of polysaccharides in Pseudomonas aeruginosa biofilm development   总被引:2,自引:0,他引:2  
During the past decade, there has been a renewed interest in using Pseudomonas aeruginosa as a model system for biofilm development and pathogenesis. Since the biofilm matrix represents a crucial interface between the bacterium and the host or its environment, considerable effort has been expended to acquire a more complete understanding of the matrix composition. Here, we focus on recent developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix.  相似文献   

10.
镁离子对黏液型铜绿假单胞菌生物膜形成过程的影响   总被引:2,自引:0,他引:2  
目的探讨镁离子对黏液型铜绿假单胞菌早期黏附和生物膜形成过程的影响。方法荧光多功能酶标仪检测各组不同时间点96孔板底部黏附细菌的荧光强度,荧光探针FTTC-ConA染细菌胞外多糖(Extracellular Polymeric Substances,EPS)、荧光显微镜下观察各组多糖差别;SYTO9/PI染生物膜内细菌、激光共聚焦显微镜观察结合BF图像结构分析软件(Image Structor Analyzer,ISA)对各组生物膜结构参数进行定量分析。结果2d时,空白组和1mmol/L镁组的黏附细菌的荧光强度分别为1845.67±45.3和2254.78±42.45,t=-9.96,P〈0.05;0.1mmol/L的镁浓度下荧光强度也有增加,其余各时间组趋势与2d组相似;在荧光显微镜下观察可见随着镁浓度增加,EPS增多;激光共聚焦显微镜下可见随着镁浓度增加,生物膜活菌增加、菌落变密集;ISA软件分析结果示:空白组和1mmol/L镁组的6d生物膜厚度分别为(25.80±1.16)μm和(34.87±1.59)μm,t=-13.85,P〈0.05;区域孔率分别为0.96±0.05和0.90±0.04,t=2.48,P〈0.05;平均扩散距离分别为1.54±0.15和1.92±0.16,t=5.23,P〈0.05;结构熵分别为3.64±0.57和4.70±1.09,t=-2.6,P〈0.05,3d组生物膜也有相同的趋势。结论镁离子可以增强黏液型铜绿假单胞菌的早期黏附,影响随后生物膜的形成及结构。  相似文献   

11.
Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P. aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming of P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm-associated chronic infections caused by P. aeruginosa.  相似文献   

12.
铜绿假单胞菌铁摄取与生物被膜形成研究进展   总被引:1,自引:0,他引:1  
于珊  马旅雁 《生物工程学报》2017,33(9):1489-1512
生物被膜是单细胞微生物通过其分泌的胞外多聚基质粘附于介质表面并将其自身包绕其中而成的膜样微生物细胞聚集物。生物被膜的形成使细菌具有更强的适应外界环境的能力,也是导致微生物产生耐药性及慢性感染性疾病难以治疗的重要原因之一。铜绿假单胞菌在肺部的定殖是肺囊性纤维化病患者发病和死亡主要原因,其造成的感染通常与形成抗生素抗性极强的生物被膜有关。铜绿假单胞菌生物被膜的形成受控于多种复杂的细菌调控体系之下,包括群体感应系统及参与调节胞外多聚基质合成的双组分调控系统等。此外,为了利用低浓度的环境铁来维持生存并完成各种生理功能,铜绿假单胞菌进化出了一系列铁摄取系统,这些系统对其毒力因子的释放和生物被膜的形成又起着重要的调控作用。本文主要对铜绿假单胞菌生物被膜的形成与调控机制及其铁摄取系统进行了综述,为进一步了解及清除铜绿假单胞菌引发的问题提供途径与思路。  相似文献   

13.
14.
A study was undertaken to examine the effects of the heavy metals copper, lead, and zinc on biofilm and planktonic Pseudomonas aeruginosa. A rotating-disk biofilm reactor was used to generate biofilm and free-swimming cultures to test their relative levels of resistance to heavy metals. It was determined that biofilms were anywhere from 2 to 600 times more resistant to heavy metal stress than free-swimming cells. When planktonic cells at different stages of growth were examined, it was found that logarithmically growing cells were more resistant to copper and lead stress than stationary-phase cells. However, biofilms were observed to be more resistant to heavy metals than either stationary-phase or logarithmically growing planktonic cells. Microscopy was used to evaluate the effect of copper stress on a mature P. aeruginosa biofilm. The exterior of the biofilm was preferentially killed after exposure to elevated concentrations of copper, and the majority of living cells were near the substratum. A potential explanation for this is that the extracellular polymeric substances that encase a biofilm may be responsible for protecting cells from heavy metal stress by binding the heavy metals and retarding their diffusion within the biofilm.  相似文献   

15.
目的评估左氧氟沙星(levofloxacin,LFX)浸涂导管抑制铜绿假单胞菌粘附、定植,防止生物膜形成的能力。方法体外部分:制备LFX浸涂导管。LFX浸涂导管、PVC导管分别浸没在5 mL 50%LB培养液中(含PAO1 108CFU/mL),37℃孵育6、12、24和48 h,在各时间点,予导管表面和导管培养液进行细菌计数。体内部分:小鼠皮下植入LFX浸涂导管或PVC导管,沿着导管注射PAO1菌液50μL(107CFU)。第1、5天,对植入导管及导管周围组织进行细菌计数及扫描电镜(SEM)观察。结果 (1)LFX浸涂导管显示药物的快速释放。(2)在各孵育时间点,LFX浸涂导管及导管培养液的细菌数较PVC导管均明显减少(P〈0.05)。(3)小鼠感染第1、5天,LFX浸涂植入导管表面没有或很少细菌;LFX浸涂导管较PVC导管能明显减少植入导管周围组织的细菌量(P〈0.05)。(4)SEM观察:感染第1、5天,LFX浸涂导管表面散在单个细菌或者没有细菌;而第1天,PVC导管表面大量细菌分散存在。第5天,导管表面"珊瑚状"生物膜形成。结论 LFX浸涂导管能抑制铜绿假单胞菌粘附、定植,防止生物膜形成,从而有效降低导管生物膜相关感染的发生。  相似文献   

16.
17.
An analysis of the Pseudomonas aeruginosa genomic sequence revealed three gene clusters, PA1381-1393, PA2231-2240, and PA3552-3558, in addition to the alginate biosynthesis gene cluster, which appeared to encode functions for exopolysaccharide (EPS) biosynthesis. Recent evidence indicates that alginate is not a significant component of the extracellular matrix in biofilms of the sequenced P. aeruginosa strain PAO1. We hypothesized that at least one of the three potential EPS gene clusters revealed by genomic sequencing is an important component of P. aeruginosa PAO1 biofilms. Thus, we constructed mutants with chromosomal insertions in PA1383, PA2231, and PA3552. The mutant with a PA2231 defect formed thin unstructured abnormal biofilms. The PA3552 mutant formed structured biofilms that appeared different from those formed by the parent, and the PA1383 mutant formed structured biofilms that were indistinguishable from those formed by the parent. Consistent with a previous report, we found that polysaccharides were one component of the extracellular matrix, which also contained DNA. We suggest that the genes that were inactivated in our PA2231 mutant are required for the production of an EPS, which, although it may be a minor constituent of the matrix, is critical for the formation of P. aeruginosa PAO1 biofilms.  相似文献   

18.
During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments.  相似文献   

19.
A current question in biofilm research is whether biofilm-specific genetic processes can lead to differentiation in physiology and function among biofilm cells. In Pseudomonas aeruginosa, phenotypic variants which exhibit a small-colony phenotype on agar media and a markedly accelerated pattern of biofilm development compared to that of the parental strain are often isolated from biofilms. We grew P. aeruginosa biofilms in glass flow cell reactors and observed that the emergence of small-colony variants (SCVs) in the effluent runoff from the biofilms correlated with the emergence of plaque-forming Pf1-like filamentous phage (designated Pf4) from the biofilm. Because several recent studies have shown that bacteriophage genes are among the most highly upregulated groups of genes during biofilm development, we investigated whether Pf4 plays a role in SCV formation during P. aeruginosa biofilm development. We carried out immunoelectron microscopy using anti-Pf4 antibodies and observed that SCV cells, but not parental-type cells, exhibited high densities of Pf4 filaments on the cell surface and that these filaments were often tightly interwoven into complex latticeworks surrounding the cells. Moreover, infection of P. aeruginosa planktonic cultures with Pf4 caused the emergence of SCVs within the culture. These SCVs exhibited enhanced attachment, accelerated biofilm development, and large regions of dead and lysed cells inside microcolonies in a manner identical to that of SCVs obtained from biofilms. We concluded that Pf4 can mediate phenotypic variation in P. aeruginosa biofilms. We also performed partial sequencing and analysis of the Pf4 replicative form and identified a number of open reading frames not previously recognized in the genome of P. aeruginosa, including a putative postsegregational killing operon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号