首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Mutants that adsorb certain colicins without being killed, i.e., tolerant mutants (tol), were isolated from Escherichia coli K-12 strains. Selection was done either with colicin K or E2. Several groups of mutants showing different phenotypes were found, and some of them showed tolerance to both K and E colicins, which have different receptors. Many of these mutants mapped near gal. Typical mutants from group II, III, and IV were studied in more detail. The mutant loci were contransducible with gal by phage P1. The linkage order was deduced to be tol-gal-λ. In partially diploid strains, these mutant loci are recessive to wild-type alleles. Temperature-dependent conditionally tolerant mutants were also isolated. Two groups were found: the first was tolerant to E2 and E3 at 40 C, but sensitive at 30 C; the second was tolerant to E2 at 30 C, but sensitive at 40 C. Experiments done with these mutants suggest that these mutations affect the heat lability of some protein that is necessary for the response of cells to colicins. Conditionally lethal tolerant mutants were isolated which at 40 C were tolerant to E2 and E3 and could not grow, but which at 30 C were fully sensitive and grew normally. The mutation mapped near malA. The tolerance at 40 C is not due to a consequence of an inactivation of general cellular metabolism, but presumably is a cause of the subsequent inhibition of cellular growth. The results suggest that some protein components involved in the response to colicin are also vital to normal cellular growth.  相似文献   

2.
Colicin-tolerant mutants of Escherichia coli K-12, which map near gal at 17 min (tolA, B mutants), have been isolated and characterized. These mutants exhibited a very broad spectrum of phenotypic changes consistent with the interpretation that they are cell surface mutants. In addition to being colicintolerant and sensitive to deoxycholate and ethylenediaminetetraacetic acid, tolA, B mutants are sensitive to vancomycin, bacitracin, and dodecyl sulfate. The tolA, B mutants from most strains also formed mucoid colonies at 30 C on nutrient agar plates and had a greatly increased plating efficiency for lysisdefective S mutants of bacteriophage lambda. Complementation analysis showed that the four phenotypic groups of tol mutants that map near gal fall into three complementation groups: tolP, tolA, and tolB. Recombination analysis by three-factor crosses established the order of the three groups as tolP-tolA-tolB-gal. Because of the wide variety of phenotypic changes that accompanies mutation to colicin tolerance, revertants were isolated to test whether single or multiple mutations were involved. The reversion analysis, as well as other genetic criteria, confirmed that only single mutations were involved, suggesting that these pleiotropic changes are a consequence of a single change in the E. coli cell surface.  相似文献   

3.
Bacteriophage f1 Infection and Colicin Tolerance   总被引:8,自引:1,他引:7       下载免费PDF全文
Bacteriophage f1-infected cells are relatively insensitive to a variety of colicins including E1, E2, and K; an f1 gene product is responsible for this insensitivity. A colicin-tolerant mutant cannot grow f1 phage; f1 DNA does not penetrate this mutant properly. One interpretation of these results is that an f1 gene product blocks the penetration of colicins which is necessary for their action, whereas the colicin-tolerant mutation blocks the penetration of colicins as well as phage f1 DNA.  相似文献   

4.
Several hundred independent bacteriocin-tolerant mutants have been isolated without mutagenesis from three strains of Escherichia coli. On the basis of patterns of sensitivity to eight different colicins, over 85% of these mutants could be grouped into four classes. Two classes of mutants, class A and class B, are equivalent to tolA and tolB type mutants. We found tolA and tolB mutants were sensitive to the antibiotic bacitracin. The other two classes of bacteriocin-tolerant mutants, class F and class G, are distinguished from other types of colicin-tolerant mutants on the basis of sensitivity to colicins, dyes, detergents, antibiotics, and chelating agents. The mutation in class F and class G mutants is located between 21 to 23 min on the E. coli chromosome. We propose to designate the loci of these mutations as tolF and tolG, respectively.  相似文献   

5.
Sensitivity of spheroplasts (prepared in two ways) of a colicin-sensitive strain, of colicinresistant and of colicin-tolerant mutants and of strains immune to colicins E1 and E2 was estimated and compared. Generally, the removal of the peptidoglycan layer brought about a slight nonspecific support for colicin translocation across the cell wall in sensitive,tolB tolerant and immune bacteria.tolB spheroplasts were colicin E1-sensitive, but E2-insensitive. Spheroplasts were always fragile and lysed spontaneously, especially those produced by lysozyme. Bacteria carryingtolA, tolQ andtolR mutations kept their colicin insensitivity as spheroplasts, just as the resistant ones. Bacteria rendered colicinogenic and hence colicin-immune turned to high colicin sensitivity in spheroplast form. The results indicate a change in plasma membrane associated with the spheroplast formation.  相似文献   

6.
Three multiply colicin-tolerant mutants in Escherichia coli K-12 from the TolIV, TolXIV, and TolXV phenotypic groups, all lacking or having only trace amounts of protein 1, a major outer-membrane protein, were mapped by Hfr crosses, and the position on the chromosome was confirmed by cotransduction with nearby markers. The mutations were located near malQP in the 74-min region of the E. coli chromosome. This locus is designated ompB, and analysis of data from two three-point crosses determined the linear sequence of genes to be aroB-ompB-malQP-glpD.  相似文献   

7.
Localization and Solubilization of Colicin Receptors   总被引:22,自引:13,他引:9       下载免费PDF全文
Envelope fractions isolated from Escherichia coli K-12 C600 and from colicin-resistant and colicin-tolerant (Tol II) mutants derived from this strain were separated on sucrose gradients into cell wall-enriched and cytoplasmic membrane-enriched fractions. These fractions were tested for their ability to neutralize colicins of the E and K groups. Neutralization activity was found in the cell wall-enriched fraction from the parent and the Tol II mutant but was absent from all fractions from the resistant mutant. This was also tested with several other E. coli strains. In all cases, sensitive strains contained the neutralization activity, whereas resistant strains did not. The neutralization activity was solubilized from cell walls or cell envelopes of sensitive or Tol II strains by extraction at room temperature with Triton X-100 plus ethylenediaminetetraacetic acid. The solubilized activity was precipitated by 20% ammonium sulfate, 70% ethanol, or 10% trichloroacetic acid. The activity was destroyed by treatment of the solubilized preparation with trypsin or periodate. These results suggest that this colicin-neutralization activity is due to the presence of specific receptors localized in the cell wall and that intact protein and a carbohydrate are required for this receptor to bind colicin.  相似文献   

8.
Colicin E-resistant mutants were isolated in Escherichia coli K-12 which, although still apparently possessing the E receptor and adsorbing colicin, were nevertheless insensitive (refractory) to its effect. Eight phenotypic groups were obtained, but some mutants from three of these groups were all shown to map at gal, whereas a second refractory locus, giving resistance to E1 alone, mapped close to thy. It is suggested that the successful fixation of any of the three distinct colicins of group E may involve a dual role for the cell surface "receptor," the first for the binding of the protein and the second for the correct orientation of the bound molecule relative to the cytoplasmic membrane. The majority of the refractory mutants isolated may derive from changes in components concerned with the second of these receptor functions. Two groups of mutants, however, refractory to only E1 or E2, probably reflect changes in the intracellular transmission systems which specifically mediate the effects of these two colicins, the changes not allowing transmission through the cytoplasmic membrane to the respective targets of the colicins. The E1 adsorption site was shown to be distinct from that for E2 and E3, indicating an early separation of the colicin E transmission systems.  相似文献   

9.
The 421-residue protein TolA is required for the translocation of group A colicins (colicins E1, E2, E3, A, K, and N) across the cell envelope of Escherichia coli. Mutations in TolA can render cells tolerant to these colicins and cause hypersensitivity to detergents and certain antibiotics, as well as a tendency to leak periplasmic proteins. TolA contains a long alpha-helical domain which connects a membrane anchor to the C-terminal domain, which is required for colicin sensitivity. The functional role of the alpha-helical domain was tested by deletion of residues 56 to 169 (TolA delta1), 166 to 287 (TolA delta2), or 54 to 287 (TolA delta3) of the alpha-helical domain of TolA, which removed the N-terminal half, the C-terminal half, or nearly the entire alpha-helical domain of TolA, respectively. TolA and TolA deletion mutants were expressed from a plasmid in an E. coli strain producing no chromosomally encoded TolA. Cellular sensitivity to the detergent deoxycholate was increased for each deletion mutant, implying that more than half of the TolA alpha-helical domain is necessary for cell envelope stability. Removal of either the N- or C-terminal half of the alpha-helical domain resulted in a slight (ca. 5-fold) decrease in cytotoxicity of the TolA-dependent colicins A, E1, E3, and N compared to cells producing wild-type TolA when these mutants were expressed alone or with TolQ, -R, and -B. In cells containing TolA delta3, the cytotoxicity of colicins A and E3 was decreased by a factor of >3,000, and K+ efflux induced by colicins A and N was not detectable. In contrast, for colicin E1 action on TolA delta3 cells, there was little decrease in the cytotoxic activity (<5-fold) or the rate of K+ efflux, which was similar to that from wild-type cells. It was concluded that the mechanism(s) by which cellular uptake of colicin E1 is mediated by the TolA protein differs from that for colicins A, E3, and N. Possible explanations for the distinct interaction and unique translocation mechanism of colicin E1 are discussed.  相似文献   

10.
Rough strains of Salmonella typhimurium were sensitive to coliphage BF23. Spontaneous mutants resistant to BF23 (bfe) were isolated, and the trait was mapped using phage P1. The bfe gene in S. typhimurium was located between argF (66% co-transducible) and rif (61% co-transducible). The BF23-sensitive S. typhimurium strains were not sensitive to the E colicins. Cells of these rough strains absorbed colicin, as measured by loss of E2 or E3 killing units from colicin solutions and by specific adsorption of 125I-colicin E2 to bfe+ cells. Sensitivity to colicins E1, E2, and E3 was observed in a S. typhimurium strain carrying the F'8 gal+ episome. This episome complemented the tolB mutation of Escherichia coli. We conclude that the bfe+ protein satisfies requirements for adsorption of both phage BF23 and the E colicins. In addition, expression of a gene from E. coli, possibly tolB, is necessary for efficient E colicin killing of S. typhimurium.  相似文献   

11.
Using transposon Tn5 inactivation technology a collection of Escherichia coli mutants defective in riboflavine biosynthesis was obtained. All mutations were distributed within three linkage groups. With the help of P1-transduction mapping, group I mutations (ribA locus) were localized near cysB locus (28 min of the standard 100 min E. coli map) and mutations of group II (ribB locus) were mapped near tolC locus (66 min). The location of group III mutations was approximately determined by the F' complementation analysis: this linkage group lies in the region of 56-60 min of the E. coli map.  相似文献   

12.
Summary Mutants of Escherichia coli K12 carrying exc mutations inducing the release of the plasmid pBR322-encoded -lactamase (EC 3.5.2.6) into the extracellular medium were analysed and compared with previously described excretory mutants carrying lky mutations associated with the release of alkaline phosphatase and to tolA and tolB mutants, originally described as tolerant towards various colicins. The exc, lky and tol mutations mapped near the gal operon at min 16.5 of the E. coli linkage map. A genetic analysis presented in this paper showed that some exc and lky mutations belonged to the tolA and tolB complementation groups. Furthermore, we identified a third cistron, excC, involved in the excretion of periplasmic enzymes but distinct from the two others.  相似文献   

13.
Genetic Analysis of Flagellar Mutants in Escherichia coli   总被引:37,自引:29,他引:8       下载免费PDF全文
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked.  相似文献   

14.
Spontaneous Escherichia coli K-12 mutants tolerant to colicin E3 were isolated, and on the basis of their tolerance patterns to 19 kinds of colicins, a new phenotypic class of tolZ mutants was found. The tolZ gene was located between min 77 and 78 on the E. coli K-12 genetic map. The tolZ mutants were tolerant to colicins E2, E3, D, Ia, and Ib, and showed an increased sensitivity to ampicillin, neomycin, and EDTA, but not to deoxycholate; they were able to grow on glucose minimal medium, but not on nonfermentable carbon sources (succinate, acetate, pyruvate, lactate, malate, etc.). The pleiotropic phenotype of the tolZ mutant was due to a single mutation. Both respiration and membrane ATPase activity of the tolZ mutant were normal. The tolZ mutant had a defect in the uptake of proline, glutamine, thiomethyl-beta-D-galactoside, and triphenylmethylphosphonium ion; these uptake systems are driven by an electrochemical proton gradient (delta-mu H+) or a membrane potential (delta psi). In contrast, the uptake of methionine and alpha-methyl-D-glucoside, which is not dependent on delta-mu H+ and delta psi, was normal in the tolZ mutant. Glucose 6-phosphate uptake at pH 5.5, which is driven by a transmembrane pH gradient, in the tolZ mutant was similar to the parent level. These results indicate that the tolZ mutant has a defect in the generation of delta-mu H+ and delta psi.  相似文献   

15.
We describe mutations in a new bacterial locus, designated fii, which do not allow the filamentous bacteriophage f1 to infect bacteria harboring the F plasmid. Mutations at this locus do not affect the ability of F plasmid-containing bacteria to undergo conjugation or be infected by the F plasmid-specific RNA phage f2. The filamentous phage can still adsorb to the F sex pilus, but the DNA is unable to enter the bacteria. All fii mutants become tolerant to colicins E1, E2, and E3. Strains with amber mutations in fii also are unable to plaque P1, even though they can be infected with this phage. Mutations in fii also prevent infection of bacteria harboring the N plasmid by the filamentous bacteriophage IKe. The fii locus maps adjacent to tolA, mutants of which demonstrate tolerance to high levels of the E and K colicins. The three genes tolA, tolB, and fii are shown to reside on a 4.3-kilobase fragment of the Escherichia coli chromosome. Each gene has been cloned into a chimeric plasmid and shown to complement, in trans, mutations at the corresponding chromosomal locus. Studies in maxicells show that the product of fii appears to be a 24-kilodalton protein which copurifies with the cell envelope. The product of tolA has been identified tentatively as a 51-kilodalton protein. Data from cloning, Tn5 mutagenesis, and P1 transduction studies are consistent with the gene order sucA-fii-tolA-tolB-aroG near 17 min on the E. coli map.  相似文献   

16.
Sixteen mutants of Escherichia coli defective in H+-ATPase (proton-translocating ATPase) were tested for their ability to recombine with hybrid plasmids carrying various portions of the beta subunit cistron. Twelve mutations were mapped within the carboxyl half of the cistron corresponding to amino acid residues 279 to 459 (domain II), while four mutations were mapped within residues 17 to 278 (domain I). The biochemical properties of these mutants were analyzed in terms of the proton permeability of their membranes and the assembly properties of their F1F0 complex. The mutants were classified according to the properties into three types, I, II, and III. In 12 mutants of type I, proton conduction in membrane vesicles was blocked and little F1 was released from the membranes under conditions in which F1 could be released from wild-type membranes, suggesting that assembly of the F1F0 complex is structurally and functionally defective. F1 was partially purified with very low recovery from one of the type I mutants, KF16. ATPase activity was reconstituted from this F1 with the beta subunit of the wild type, confirming the genetic results. Only one mutant, KF38, was classified as type II. Its membranes were partially leaky to protons and its F1 was releasable, suggesting that the interaction of its F1 and F0 was unstable. Type III mutants, KF11 and KF43, had an F1F0 complex with very low activity, in which the structure of F1 was relatively similar to that of the wild type. F1 was purified as a single complex from KF43 in this study and from KF11 previously (H. Kanazawa, Y. Horiuchi, M. Takagi, Y. Ishino, and M. Futai (1980) J. Biochem. 88, 695-703). Reconstitution experiments in vitro showed that the F1's of both mutants were defective in the beta subunit. The properties of the altered F1 of KF43 differed from those of F1 of KF11, suggesting that the mutation sites of KF43 and KF11 were different. From the results of mapping mutation sites and the biochemical properties of the mutants, the correlation of structural domains with function of the beta subunit is discussed. Most type I and type II mutations except that of KF39 were mapped in domain II, while the type III mutations were mapped in domain I, suggesting that domain II is more important than domain I for the function of the beta subunit, especially in terms of proper assembly of the F1F0 complex.  相似文献   

17.
V Braun 《Journal of bacteriology》1989,171(11):6387-6390
Double exbB tolQ mutants of Escherichia coli were completely resistant to bacteriophages T1 and phi 80, in contrast to strains with exbB or tolQ mutations, which were sensitive. Cells carrying mutations in exbB were partially tolerant to colicins B, D, and M and became fully tolerant by the introduction of tolQ mutations. This suggested involvement of both exbB and tolQ in tonB-dependent uptake.  相似文献   

18.
VanScyoc WS  Newman RA  Sorensen BR  Shea MA 《Biochemistry》2006,45(48):14311-14324
Calmodulin (CaM) is an essential, eukaryotic protein comprised of two highly homologous domains (N and C). CaM binds four calcium ions cooperatively, regulating a wide array of target proteins. A genetic screen of Paramecia by Kung [Kung, C. et al. (1992) Cell Calcium 13, 413-425] demonstrated that the domains of CaM have separable physiological roles: "under-reactive" mutations affecting calcium-dependent sodium currents mapped to the N-domain, while "over-reactive" mutations affecting calcium-dependent potassium currents localized to the C-domain of CaM. To determine whether and how these mutations affected intrinsic calcium-binding properties of CaM domains, phenylalanine fluorescence was used to monitor calcium binding to sites I and II (N-domain) and tyrosine fluorescence was used to monitor sites III and IV (C-domain). To explore interdomain interactions, binding properties of each full-length mutant were compared to those of its corresponding domain fragments. The calcium-binding properties of six under-reactive mutants (V35I/D50N, G40E, G40E/D50N, D50G, E54K, and G59S) and one over-reactive mutant (M145V) were indistinguishable from those of wild-type CaM, despite their deleterious physiological effects on ion-channel regulation. Four over-reactive mutants (D95G, S101F, E104K, and H135R) significantly decreased the calcium affinity of the C-domain. Of these, one (E104K) also increased the calcium affinity of the N-domain, demonstrating that the magnitude and direction of wild-type interdomain coupling had been perturbed. This suggests that, while some of these mutations alter calcium-binding directly, others probably alter CaM-channel association or calcium-triggered conformational change in the context of a ternary complex with the affected ion channel.  相似文献   

19.
Cross-resistance between bacteriophages and colicins was studied using collections of bacteriophage- and colicin-resistant mutants of Escherichia coli K-12. No new examples were found of highly specific one-to-one cross-resistance of the type suggestive of common receptors. However, several groups of mutants showed tolerance to colicins and resistance to bacteriophages. Mutants known to be very defective in lipopolysaccharides composition were found to commonly show tolerance to certain colicins in addition to their bacteriophage resistance. Another group of mutants showed varying patterns of resistance to colicins E2, E3, K, L, A, S4, N, and X and bacteriophages E4, K2, K20, K21, K29, and H+. However, many bacteriophage-resistant mutants were fully colicin sensitive, and most colicin-resistant mutants were fully sensitive to bacteriophages.  相似文献   

20.
The types of tunicamycin-resistant mutants of Bacillus subtilis were analyzed, and their mutational sites on the chromosome were mapped. A type 1 mutation that simultaneously expressed hyperproductivity of extracellular alpha-amylase was located close to amy E. Type 2 mutations were near aroI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号