首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasmid partition process is essential for plasmid propagation and is mediated by par systems, consisting of centromere-like sites and two proteins, ParA and ParB. In the first step of partition by the archetypical P1 system, ParB binds a complicated centromere-like site to form a large nucleoprotein segrosome. ParB is a dimeric DNA-binding protein that can bridge between both A-boxes and B-boxes located on the centromere. Its helix-turn-helix domains bind A-boxes and the dimer domain binds B-boxes. Binding of the first ParB dimer nucleates the remaining ParB molecules onto the centromere site, which somehow leads to the formation of a condensed segrosome superstructure. To further understand this unique DNA spreading capability of ParB, we crystallized and determined the structure of a 1:2 ParB-(142-333):A3-B2-box complex to 3.35A resolution. The structure reveals a remarkable four-way, protein-DNA bridged complex in which both ParB helix-turn-helix domains simultaneously bind adjacent A-boxes and the dimer domain bridges between two B-boxes. The multibridging capability and the novel dimer domain-B-box interaction, which juxtaposes the DNA sites close in space, suggests a mechanism for the formation of the wrapped solenoid-like segrosome superstructure. This multibridging capability of ParB is likely critical in its partition complex formation and pairing functions.  相似文献   

2.
DNA segregation ensures the stable inheritance of genetic material prior to cell division. Many bacterial chromosomes and low‐copy plasmids, such as the plasmids P1 and F, employ a three‐component system to partition replicated genomes: a partition site on the DNA target, typically called parS, a partition site binding protein, typically called ParB, and a Walker‐type ATPase, typically called ParA, which also binds non‐specific DNA. In vivo, the ParA family of ATPases forms dynamic patterns over the nucleoid, but how ATP‐driven patterning is involved in partition is unknown. We reconstituted and visualized ParA‐mediated plasmid partition inside a DNA‐carpeted flowcell, which acts as an artificial nucleoid. ParA and ParB transiently bridged plasmid to the DNA carpet. ParB‐stimulated ATP hydrolysis by ParA resulted in ParA disassembly from the bridging complex and from the surrounding DNA carpet, which led to plasmid detachment. Our results support a diffusion‐ratchet model, where ParB on the plasmid chases and redistributes the ParA gradient on the nucleoid, which in turn mobilizes the plasmid.  相似文献   

3.
Genome segregation in prokaryotes is a highly ordered process that integrates with DNA replication, cytokinesis and other fundamental facets of the bacterial cell cycle. The segrosome is the nucleoprotein complex that mediates DNA segregation in bacteria, its assembly and organization is best understood for plasmid partition. The recent elucidation of structures of the ParB plasmid segregation protein bound to centromeric DNA, and of the tertiary structures of other segregation proteins, are key milestones in the path to deciphering the molecular basis of bacterial DNA segregation.  相似文献   

4.
Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein-DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein-DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition.  相似文献   

5.
The partition system of the P1 plasmid, P1 par consists of the ParA and ParB proteins and a cis -acting site, parS . It is responsible for the orderly segregation of plasmid copies to daughter cells. Plasmids with null mutations in parA or parB replicate normally, but missegregate. ParB binds specifically to the parS site, but the role of ParA and its ATPase activity in partition is unclear. We describe a novel class of parA mutants that cannot be established or maintained as plasmids unless complemented by the wild-type gene. One, parAM314I , is conditional: it can be maintained in cells in minimal medium but cannot be established in cells growing in L broth. The lack of plasmid propagation in L broth-grown cells was shown to be caused by a ParB-dependent activity of the mutant ParA protein that blocks plasmid propagation by an interaction at the parS site. Thus, ParA acts to modify the ParB– parS complex, probably by binding to it. Partition is thought to involve selection of pairs of plasmids before segregation, either by physical pairing of copies or by binding of copies to paired host sites. We suggest that ParA is involved in this reaction and that the mutant ParA protein forms paired complexes that cannot unpair.  相似文献   

6.
The P1 plasmid partition system is responsible for segregation of daughter plasmids during division of the Escherichia coli host cell. The P1-encoded elements consist of two essential proteins, ParA and ParB, and the cis-acting incB region. The incB region determines partition-mediated incompatibility and contains the centromere-like site parS. We have isolated and purified the two proteins. ParB binds specifically to the incB region in vitro. DNase I footprinting assays place a strong binding site over the 35-bp parS sequence previously shown to be sufficient for partition when the Par proteins are supplied in trans. A weaker site lies within the incB region in sequences that are important for specifying incompatibility, but are not essential for partition. Gel band retardation assays show that a host factor binds specifically to the incB sequence. The factor strongly stimulates binding of ParB. Cutting the region at a site between the two ParB binding sites yields two fragments that can bind ParB but not host factor. Thus, information for host-factor binding lies in the region determining the specificity of plasmid incompatibility. The roles of parB and the host factor in partition and the specificity of plasmid incompatibility are discussed.  相似文献   

7.
The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells with a single plasmid focus, the focus located preferentially at mid-cell. In cells with two foci, these located at quarter-cell positions. In the absence of ParB and parC1/parC2, ParA-GFP formed stationary helices extending from one end of the nucleoid to the other. In the presence of ParB and parC1/parC2, ParA-GFP oscillated in spiral-shaped structures. Amino acid substitutions in ParA simultaneously abolished ParA spiral formation, oscillation and either plasmid localization or plasmid separation at mid-cell. Therefore, our results suggest that ParA spirals position plasmids at the middle of the bacterial nucleoid and subsequently separate them into daughter cells.  相似文献   

8.
The partition operon of P1 plasmid encodes two proteins, ParA and ParB, required for the faithful segregation of plasmid copies to daughter cells. The operon is followed by a centromere analog, parS, at which ParB binds. ParA, a weak ATPase, represses the par promoter most effectively in its ADP-bound form. ParB can recruit ParA to parS, stimulate its ATPase, and significantly stimulate the repression. We report here that parS also participates in the regulation of expression of the par genes. A single chromosomal parS was shown to augment repression of several copies of the par promoter by severalfold. The repression increase was sensitive to the levels of ParA and ParB and to their ratio. The increase may be attributable to a conformational change in ParA mediated by the parS-ParB complex, possibly acting catalytically. We also observed an in cis effect of parS which enhanced expression of parB, presumably due to a selective modulation of the mRNA level. Although ParB had been earlier found to spread into and silence genes flanking parS, silencing of the par operon by ParB spreading was not significant. Based upon analogies between partitioning and septum placement, we speculate that the regulatory switch controlled by the parS-ParB complex might be essential for partitioning itself.  相似文献   

9.
What regulates chromosome segregation dynamics in bacteria is largely unknown. Here, we show in Caulobacter crescentus that the polarity factor TipN regulates the directional motion and overall translocation speed of the parS/ParB partition complex by interacting with ParA at the new pole. In the absence of TipN, ParA structures can regenerate behind the partition complex, leading to stalls and back‐and‐forth motions of parS/ParB, reminiscent of plasmid behaviour. This extrinsic regulation of the parS/ParB/ParA system directly affects not only division site selection, but also cell growth. Other mechanisms, including the pole‐organizing protein PopZ, compensate for the defect in segregation regulation in ΔtipN cells. Accordingly, synthetic lethality of PopZ and TipN is caused by severe chromosome segregation and cell division defects. Our data suggest a mechanistic framework for adapting a self‐organizing oscillator to create motion suitable for chromosome segregation.  相似文献   

10.
11.
12.
L Radnedge  B Youngren  M Davis    S Austin 《The EMBO journal》1998,17(20):6076-6085
The P1 plasmid partition locus, P1 par, actively distributes plasmid copies to Escherichia coli daughter cells. It encodes two DNA sites and two proteins, ParA and ParB. Plasmid P7 uses a similar system, but the key macromolecular interactions are species specific. Homolog specificity scanning (HSS) exploits such specificities to map critical contact points between component macromolecules. The ParA protein contacts the par operon operator for operon autoregulation, and the ParB contacts the parS partition site during partition. Here, we refine the mapping of these contacts and extend the use of HSS to map protein-protein contacts. We found that ParB participates in autoregulation at the operator site by making a specific contact with ParA. Similarly, ParA acts in partition by making a specific contact with ParB bound at parS. Both these interactions involve contacts between a C-terminal region of ParA and the extreme N-terminus of ParB. As a single type of ParA-ParB complex appears to be involved in recognizing both DNA sites, the operator and the parS sites may both be occupied by a single protein complex during partition. The general HSS strategy may aid in solving the three-dimensional structures of large complexes of macromolecules.  相似文献   

13.
14.
15.
Bouet JY  Funnell BE 《The EMBO journal》1999,18(5):1415-1424
The partition system of P1 plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS. parS is wrapped around ParB and Escherichia coli IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the P1 partition complex. The interaction was strictly dependent on ParB and ATP. The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay. Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.  相似文献   

16.
In Caulobacter crescentus the partitioning proteins ParA and ParB operate a molecular switch that couples chromosome partitioning to cytokinesis. Homologues of these proteins have been shown to be important for the stable inheritance of F-plasmids and the prophage form of bacteriophage P1. In C. crescentus, ParB binds to sequences adjacent to the origin of replication and is required for the initiation of cell division. Additionally, ParB influences the nucleotide-bound state of ParA by acting as a nucleotide exchange factor. Here we have performed a genetic analysis of the chromosome partitioning protein ParB. We show that C. crescentus ParB, like its plasmid homologues, is composed of three domains: a carboxyl-terminal dimerization domain; a central DNA-binding, helix-turn-helix domain; and an amino-terminal domain required for the interaction with ParA. In vivo expression of amino-terminally deleted parB alleles has a dominant lethal effect resulting in the inhibition of cell division. Fluorescent in situ hybridization experiments indicate that this phenotype is not caused by a chromosome partitioning defect, but by the reversal of the amounts of ATP- versus ADP- bound ParA inside the cell. We present evidence suggesting that amino-terminally truncated and full-length, wild-type ParB form heterodimers which fail to interact with ParA, thereby reversing the intracellular ParA-ATP to ParA-ADP ratio. We hypothesize that the amino-terminus of ParB is required to regulate the nucleotide exchange of ParA which, in turn, regulates the initiation of cell division.  相似文献   

17.
Centromere-like loci from bacteria segregate plasmids to progeny cells before cell division. The ParA ATPase (a MinD homologue) of the par2 locus from plasmid pB171 forms oscillating helical structures over the nucleoid. Here we show that par2 distributes plasmid foci regularly along the length of the cell even in cells with many plasmids. In vitro, ParA binds ATP and ADP and has a cooperative ATPase activity. Moreover, ParA forms ATP-dependent filaments and cables, suggesting that ParA can provide the mechanical force for the observed regular distribution of plasmids. ParA and ParB interact with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions without the involvement of partition-specific host cell receptors and is thus consistent with the striking observation that partition loci can function in heterologous host organisms.  相似文献   

18.
Centromere pairing by a plasmid-encoded type I ParB protein   总被引:1,自引:0,他引:1  
The par2 locus of Escherichia coli plasmid pB171 encodes two trans-acting proteins, ParA and ParB, and two cis-acting sites, parC1 and parC2, to which ParB binds cooperatively. ParA is related to MinD and oscillates in helical structures and thereby positions ParB/parC-carrying plasmids regularly over the nucleoid. ParB ribbon-helix-helix dimers bind cooperatively to direct repeats in parC1 and parC2. Using four different assays we obtain solid evidence that ParB can pair parC1- and parC2-encoding DNA fragments in vitro. Convincingly, electron microscopy revealed that ParB mediates binary pairing of parC fragments. In addition to binary complexes, ParB mediated the formation of higher order complexes consisting of several DNA fragments joined by ParB at centromere site parC. N-terminal truncated versions of ParB still possessing specific DNA binding activity were incompetent in pairing, hence identifying the N terminus of ParB as a requirement for ParB-mediated centromere pairing. These observations suggest that centromere pairing is an important intermediate step in plasmid partitioning mediated by the common type I loci.  相似文献   

19.
A pair of genes designated parA and parB are encoded by many low copy number plasmids and bacterial chromosomes. They work with one or more cis-acting sites termed centromere-like sequences to ensure better than random predivisional partitioning of the DNA molecule that encodes them. The centromere-like sequences nucleate binding of ParB and titrate sufficient protein to create foci, which are easily visible by immuno-fluorescence microscopy. These foci normally follow the plasmid or the chromosomal replication oriC complexes. ParA is a membrane-associated ATPase that is essential for this symmetric movement of the ParB foci. In Bacillus subtilis ParA oscillates from end to end of the cell as does MinD of E. coli, a relative of the ParA family. ParA may facilitate ParB movement along the inner surface of the cytoplasmic membrane to encounter and become tethered to the next replication zone. The ATP-bound form of ParA appears to adopt the conformation needed to drive partition. Hydrolysis to create ParA-ADP or free ParA appears to favour a form that is not located at the pole and binds to DNA rather than the partition complex. Definition of the protein domains needed for interaction with membranes and the conformational changes that occur on interaction with ATP/ADP will provide insights into the partitioning mechanism and possible targets for inhibitors of partitioning.  相似文献   

20.
The P1, P7, and pMT1 par systems are members of the P1 par family of plasmid partition elements. Each has a ParA ATPase and a ParB protein that recognizes the parS partition site of its own plasmid type to promote the active segregation of the plasmid DNA to daughter cells. ParB contacts two parS motifs known as BoxA and BoxB, the latter of which determines species specificity. We found that the substitution of a single orthologous amino acid in ParB for that of a different species has major effects on the specificity of recognition. A single change in ParB can cause a complete switch in recognition specificity to that of another species or can abolish specificity. Specificity changes do not necessarily correlate with changes in the gross DNA binding properties of the protein. Molecular modeling suggests that species specificity is determined by the capacity to form a hydrogen bond between ParB residue 288 and the second base in the BoxB sequence. As changes in just one ParB residue and one BoxB base can alter species specificity, plasmids may use such simple changes to evolve new species rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号