首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The activity of Na-K ATPase was determined in twenty-one regions of the Rhesus monkey brain. White matter contained the lowest activity. The highest activities were found in the cerebral cortex, cerebellar cortex, thalamus, and colliculi. The activities of the enzyme in gray matter were fairly regular in distribution with only a twofold difference between highest (occipital cortex) and lowest (globus pallidus). The possibility that the regional variation in the activity of the enzyme reflects differences in electrical activity and (or) the concentration of dendritic processes was discussed.  相似文献   

2.
Vitamin E concentrations were determined by high-performance liquid chromatography in different anatomical regions of the brain from 3-month-old Fischer 344 rats. Gray matter from cerebellum and cervical spinal cord contained the lowest concentrations, while gray matter from the frontal cortex and thalamus had the highest concentrations of vitamin E. Radioactive α-tocopherol injected intravenously into the rat was readily taken up by brain although the level of uptake was very low compared with the liver. The ratios of brain-to-serum radioactivities ranged from 0.011 to 0.016 depending upon the brain region. Cerebellar gray matter is characterized by a low concentration of unlabeled a-tocopherol and a high level of uptake of radioactive a-tocopherol and thus is particularly active in the metabolism of vitamin E. Concentrations of unlabeled a-tocopherol were highest in microsomal and mitochondrial fractions and were the lowest in cytosol and nuclear fractions.  相似文献   

3.
A thin-layer chromatographic procedure for the isolation of tissue phospholipids and their subsequent analysis is described. The method has been applied to the determination of the fatty acids of phosphoglycerides in human brain from the early fetal stage to old age. The study shows changes in the distribution and fatty acid composition of each phosphoglyceride in normal brain, although they are quite small after early childhood. A lipid-specific fatty acid pattern for each of the four major phosphoglycerides was found. Besides this, the pronounced differences between fatty acids of the lipids from the cerebral cortex and from the adjacent white matter justify speaking of a tissue-specific fatty acid pattern for brain phosphoglycerides. The phospholipids of cerebral white matter contained more monoenoic acid but much less polyunsaturated fatty acid than those of cerebral cortex. The brain phosphoglycerides also showed an age-dependent fatty acid pattern. With increasing age the concentration of the fatty acids of the linoleate family diminished while that of the linolenate family increased. Brain inositol phosphoglycerides, the fatty acid composition of which has not been studied systematically before, were characterized by a large concentration of arachidonate which was nearly as high for white as for gray matter and showed only small changes with age.  相似文献   

4.
Mannose-rich glycopeptides derived from brain glycoproteins were obtained by proteolysis of bovine brain tissue or subcellular fractions derived from rat brain tissue. The dialyzable mannose-rich glycopeptides were isolated by colum electrophoresis and gel flitration. These glycopeptides contained, on the average, six mannose and two N-acetylglucosamine residues with variable amounts of fucose and galactose. Over 50% of the mannose-rich glycopeptides of rat brain were localized in the microsomal and synaptosomal fractions; myelin and the soluble fraction contained lesser amounts. None was recovered from the mitochondria. The amount, per mg protein, of mannose-rich oligosaccharide chains in the myelin exceeded the concentration found in the microsomal and synaptosomal fractions. The concentration of mannose-rich glycopeptides derived from glycoproteins was 50% higher in white matter than in gray. On the other hand, the non-dialyzable and acidic sialoglycopeptides showed a three-fold enrichment in gray matter compared to white. The relatively lower ratio of sialoglycopeptides to mannose-rich glycopeptides observed in white matter (2.5) compared to gray matter (6.9) is reflected in the lower value for the ratio in myelin (1.1) compared to synpatosomes (2.1). Although glycoproteins that contain mannose-rich oligosaccharide chains are present in the nerve cell and its terminals, these glycoproteins appear to be relatively enriched in myelin and/or glial membranes.  相似文献   

5.
The concentration of manganese per gram dry tissue weight was determined in samples from 39 areas of 8 normal human brains. Manganese was shown to be unevenly distributed with the largest concentrations in the pineal gland and the olfactory bulb. The gray matter yielded a higher content of manganese than the white matter. Significant differences between individuals were found for identical areas of the gray and white matter of the cerebral cortex. Higher levels of manganese were demonstrated in the tail of the caudate nucleus than in the body and the head of the same structure. No significant correlation was shown between the amount of manganese in brain and age.  相似文献   

6.
Copper concentration was determined in samples from 38 areas of 7 normal human brains. The grey matter contained higher concentrations of copper than the white matter. Identical areas of the grey and white matter of the cerebral cortex showed significant differences between individuals. In the caudate nucleus the highest concentrations of copper were found in the tail followed by the body and the head, respectively. A negative linear regression between age and brain copper levels was demonstrated.  相似文献   

7.
Ota M  Yasuno F  Ito H  Seki C  Nozaki S  Asada T  Suhara T 《Life sciences》2006,79(8):730-736
Loss of dopamine synthesis in the striatum with normal human aging has been observed in the postmortem brain. To investigate whether there is age-associated change in dopamine synthesis in the extrastriatal brain regions similar to that in the striatum, positron emission tomography studies with (11)C-labelled l-DOPA were performed on 21 normal healthy male subjects (age range 20-67 years). Decline in the tissue fraction of gray matter per region of interest was also investigated. The overall uptake rate constant for each region of interest was quantified by the Patlak plot method using the occipital cortex as reference region. Regions of interest were set on the dorsolateral prefrontal cortex, lateral temporal cortex, medial temporal cortex, occipital cortex, parietal cortex, anterior cingulate, thalamus, midbrain, caudate nucleus, and putamen. Test-retest analysis indicated good reproducibility of the overall uptake rate constant. Significant age-related declines of dopamine synthesis were observed in the striatum and extrastriatal regions except midbrain. The decline in the overall uptake rate constant was more prominent than in the tissue fraction of gray matter. These results indicate that the previously demonstrated age-related decline in striatal dopamine synthesis extends to several extrastriatal regions in normal human brain.  相似文献   

8.
9.
Subcellular fractionation of human brain cortex obtained at autopsy yielded microsomal and synaptosome-rich fractions from the gray matter and microsomal and purified myelin fractions from the white matter. The phospholipids of myelin were high in plasmalogens, and the molar ratio of alkenyl acyl sn-glycero-3-phosphorylethanolamine to diacyl sn-glycero-3-phosphorylethanolamine was 4. The acyl groups of the myelin phosphoglycerides were enriched in monoenes (mainly 18:1 and 20:1) and a tetraene, 22:4(n - 6). The phospholipids in the synaptosome-rich fraction were high in diacyl sn-glycero-3-phosphorylcholine, and the molar ratio of the alkenyl acyl sn-glycero-3-phosphorylethanolamine to diacyl sn-glycero-3-phosphorylethanolamine was 0.88. The acyl groups of synaptosomal ethanolamine phosphoglycerides were rich in 22:6(n - 3) but contained a very low amount of 20:1. The lipid composition of microsomes from the gray matter was different from that of microsomes from the white matter but was nearly identical with that of the synaptosome-rich fraction. Except for a slightly lower proportion of alkenyl acyl sn-glycero-3-phosphorylethanolamine and sphingomyelin, the lipid composition of microsomes from the white matter was also similar to that of the myelin. There were also species-related differences between the brain lipid composition of human and subhuman primates and that of the rodents. Furthermore, the brain lipid composition in normal human subjects is rather constant and does not seem to be affected much by individual variations.  相似文献   

10.
Abstract— The Thy-1 antigen of rat brain is a membrane glycoprotein of molecular weight 17,500. It was localized in sections of brain and spinal cord by indirect immunofluorescence using rabbit antisera raised against purified Thy-1 and fluorescein conjugated purified sheep F(ab')2, anti-(rabbit IgG) antibody fragments. The specificity of the anti-(Thy-1) sera was tested by a quantitative indirect radioactive binding assay which is particularly useful for ascertaining the specificity of reagents used in immunohistochemical studies. Purified Thy-1 was used to absorb the anti-(Thy-1) sera for controls in the immunofluorescence experiments. Strong specific fluorescence was found throughout the gray matter of brain and spinal cord with lesser amounts in white matter. The nuclei of all neural cells and also myelin lacked fluorescence. Some of the large neurons contained weak cytoplasmic fluorescence, but the majority of the immunofluorescence was located in the neuropil of the brain and spinal cord. There was an indication that Thy-1 was associated with synaptic knobs due to its presence in synaptic glomeruli and its granular appearance around some neurons. An additional association with glial membranes could not be excluded.  相似文献   

11.
Postnatal developmental patterns of uridine kinase were determined in crude subcellular fractions of the rat cerebellum, hypothalamus and cerebral cortex at ages 3 through 60 days. The highest specific activity and predominant distribution of enzyme was in the 105,000g supernatant of the 3 brain regions. Enzyme activity in hypothalamus and cerebral cortex was maximum at 3 days and decreased with age; in cerebellum it increased through 13 days and decreased thereafter. Thus, the pattern of activity in hypothalamus and cerebral cortex paralleled changes in DNA and RNA synthesis through age 60 days; in cerebellum, it more closely approximated changes in DNA synthesis during early development. Changes inK m with aging suggest that the brain regions contain more than one form of enzyme. The highest particulate activity was in the microsomal fraction of the cerebellum and hypothalamus at all ages and in the cortex at 35 and 60 days. Relative specific activity for microsomal fractions of the brain regions at 60 days indicate a concentration of the enzyme which may be relevant in the maintenance of RNA activity in adult brain.  相似文献   

12.
In the present study we isolated two splice variants of organic anion transporting polypeptide 3A1 (OATP3A1_v1 and OATP3A1_v2) from human brain. OATP3A1_v2 lacks 18 amino acids (aa) at the COOH-terminal end (692 aa) but is otherwise similar in sequence to OATP3A1_v1 (710 aa). OATP3A1_v1 exhibits a wide tissue distribution, with expression in testis, various brain regions, heart, lung, spleen, peripheral blood leukocytes, and thyroid gland, whereas OATP3A1_v2 is predominantly expressed in testis and brain. On the cellular and subcellular levels OATP3A1_v1 could be immunolocalized in testicular germ cells, the basolateral plasma membrane of choroid plexus epithelial cells, and neuroglial cells of the gray matter of human frontal cortex. Immunolocalization of OATP3A1_v2 included Sertoli cells in testis, apical and/or subapical membranes in choroid plexus epithelial cells, and neurons (cell bodies and axons) of the gray and white matter of human frontal cortex. The rodent ortholog Oatp3a1 was also widely distributed in rat brain, and its localization included somatoneurons as well as astroglial cells. Transport studies in cRNA-injected Xenopus laevis oocytes and in stably transfected Chinese hamster ovary FlpIn cells revealed a similar broad substrate specificity for both splice variants. Transported substrates include prostaglandin (PG)E1 and PGE2, thyroxine, and the cyclic oligopeptides BQ-123 (endothelin receptor antagonist) and vasopressin. These studies provide further evidence for the involvement of OATPs in oligopeptide transport. They specifically suggest that OATP3A1 variants might be involved in the regulation of extracellular vasopressin concentration in human brain and thus might influence the neuromodulation of neurotransmission by cerebral neuropeptides such as vasopressin. peptide; transport; neuron  相似文献   

13.
Dolichol in Human Brain: Regional and Developmental Aspects   总被引:3,自引:2,他引:1  
Distinct regional differences in dolichol content were defined in human brain from 15 to 76 years of age. Concerning the regional distribution of dolichol, levels were: higher in cortical gray matter than in subcortical white matter, highest among cortical regions in temporal gray matter, highest among all brain regions in thalamus, and lowest among all brain regions in lower brain stem and spinal cord. The developmental changes in the contents of dolichol were found to be different among brain regions. For example, among regions with the highest levels of dolichol, in thalamus there was a six to sevenfold increase, but in parietal gray matter, only a 2.5-fold increase. Regional and developmental changes in the proportions of the individual molecular species (isoprenologues) of dolichol were also observed. The findings indicate that the metabolism of dolichol is not uniform among regions of developing and aging human brain and may have implications for the role of dolichol in normal and diseased human brain.  相似文献   

14.
Kríz L  Bicíková M  Hill M  Hampl R 《Steroids》2005,70(14):960-969
Dehydroepiandrosterone and its sulfated form are commonly known as modulators of gamma-aminobutyrate A and N-methyl-D-aspartate receptors. In spite of poor permeability of the blood-brain barrier for sulfated steroids, high concentrations of dehydroepiandrosterone and also its sulfate have been found in brain tissue. Physiological concentrations of these neuromodulators are maintained by two enzymes present in the blood and many peripheral tissues, including the brain, namely, steroid sulfatase and neurosteroid sulfuryl transferase (NSST). This prompted us to investigate activities of these enzymes in primate brain tissue. Rather low neurosteroid sulfuryl transferase activity was detectable in in vitro incubations of cytosol fractions from male and female Macaca mulatta brains, dissected to cerebral cortex, subcortex, and cerebellum. In male monkeys, the highest activity was found in the cerebellum followed by cortex and subcortex. On the other hand, in female monkeys, the highest activity was determined in the cortex followed by subcortex and cerebellum. Steroid sulfatase activity was determined in in vitro microsomal samples from each of the above-mentioned brain regions. Specific activities in female cerebral regions declined in the order: cerebellum, cortex, and subcortex. In male monkeys, no significant difference among the studied regions was observed. Using dehydroepiandrosterone sulfate as a substrate, the apparent kinetic characteristics of steroid sulfatase were determined as follows: K(M) 36.10 +/- 8.33 microM, V(max) 8.38 +/- 1.68 nmol/h/mg protein. These results will serve as a basis for further studies concerning the pathophysiology of human brain tumors.  相似文献   

15.
We prepared a monoclonal antibody to microtubule-associated protein 1 (MAP 1), one of the two major high molecular weight MAP found in microtubules isolated from brain tissue. We found that MAP 1 can be resolved by SDS PAGE into three electrophoretic bands, which we have designated MAP 1A, MAP 1B, and MAP 1C in order of increasing electrophoretic mobility. Our antibody recognized exclusively MAP 1A, the most abundant and largest MAP 1 polypeptide. To determine the distribution of MAP 1A in nervous system tissues and cells, we examined tissue sections from rat brain and spinal cord, as well as primary cultures of newborn rat brain by immunofluorescence microscopy. Anti-MAP 1A stained white matter and gray matter regions, while a polyclonal anti-MAP 2 antibody previously prepared in this laboratory stained only gray matter. This confirmed our earlier biochemical results, which indicated that MAP 1 is more uniformly distributed in brain tissue than MAP 2 (Vallee, R.B., 1982, J. Cell Biol., 92:435-442). To determine the identity of cells and cellular processes immunoreactive with anti-MAP 1A, we examined a variety of brain and spinal cord regions. Fibrous staining of white matter by anti-MAP 1A was generally observed. This was due in part to immunoreactivity of axons, as judged by examination of axonal fiber tracts in the cerebral cortex and of large myelinated axons in the spinal cord and in spinal nerve roots. Cells with the morphology of oligodendrocytes were brightly labeled in white matter. Intense staining of Purkinje cell dendrites in the cerebellar cortex and of the apical dendrites of pyramidal cells in the cerebral cortex was observed. By double-labeling with antibodies to MAP 1A and MAP 2, the presence of both MAP in identical dendrites and neuronal perikarya was found. In primary brain cell cultures anti-MAP 2 stained predominantly cells of neuronal morphology. In contrast, anti-MAP 1A stained nearly all cells. Included among these were neurons, oligodendrocytes and astrocytes as determined by double-labeling with anti-MAP 1A in combination with antibody to MAP 2, myelin basic protein or glial fibrillary acidic protein, respectively. These results indicate that in contrast to MAP 2, which is specifically enriched in dendrites and perikarya of neurons, MAP 1A is widely distributed in the nervous system.  相似文献   

16.
Human brain glycoproteins depleted of Thy-1 antigen were used to immunise Balb/c mice for monoclonal antibody production. The F3-87-8 antibody described in this paper interacts with a determinant present in large amounts on all human brain subregions studied (cerebral cortical grey matter, white matter, caudate, thalamus, dentate nucleus, putamen, cerebellar cortex) but absent from all other tissues examined (liver, heart, kidney, spleen, thymus, lymph node, erythrocyte, adrenal gland, and peripheral nerve). The determinant is conserved in mammalian evolution, as the brains of the rat and dog have amounts equal to that found in human brain. Balb/c mouse brain has approximately one-third as much antigen activity as these other mammalian brains, whereas brains of the frog and chicken have no detectable antigenic activity. Developmental studies showed that 16-week human foetal brain and neonatal dog brain had little or no antigen activity, indicating a dramatic increase in the amount of the determinant with brain maturation. Biochemical studies showed that the F3-87-8-bearing molecule was a major sialoglycoprotein of human brain with an apparent molecular weight of 130,000. It was shown by immunofluorescence to be particularly localised in what appeared to be fibre tracts in the thalamus and basal ganglia, and in the dentate nucleus, although all regions including grey matter were stained.  相似文献   

17.
Abstract— Incomplete cerebral ischemia (oligemia) was produced in cat by carotid occlusion combined with arterial hypotension. Lowering arterial pressure to 50–60 Torr for 20 min caused marked alterations of the ATP, phosphocreatine, and lactate content of subcortical white matter. In contrast, metabolite levels in cerebral cortex and caudate nucleus were only moderately perturbed from control values. More severe oligemia resulted when arterial pressure was lowered to 30 Torr for 20 min following carotid occlusion. Metabolite levels in cortex, caudate nucleus, and white matter were greatly altered from control. In the gray matter there was regional heterogeneity of metabolic alteration, as evidenced from the pattern of NADH tissue fluorescence. The cortex contained micro-patches (0.1mm) of increased NADH, which frequently exhibited a columnar orientation.
These findings demonstrate two distinct types of cerebral inhomogeneity of metabolic failure with reduced blood flow; white matter fails before gray matter, and there is micro-heterogeneity of metabolic failure in the gray matter.  相似文献   

18.
—The properties and subcellular localization of type I (nitrophenyl) and type II (nitrocatechol) arylsulphatases were investigated in brain tissue of the rat, and optimal assay conditions were established. Sulphate, phosphate and sulphite ions inhibited the nitrocatechol sulphatases; nitrophenyl sulphatase was inhibited only by sulphite. The presence of latent enzyme activity was demonstrated for the nitrocatechol sulphatases, beta-glucuronidase, and beta-glycerophosphatase in rat and mouse brain homogenates. These hydrolases were highly sensitive to mechanical and osmotic damage; and Triton X-100 was very effective in releasing their latent (bound) activities, a finding suggestive of a lysosomal localization. Activity of nitrophenyl sulphatase was unaffected by osmotic changes or Triton X-100, characteristics suggesting a membranous association for this enzyme. Total activity of nitrophenyl sulphatase was approximately twice as great in canine gray matter as in canine white matter; the converse obtained for beta-glucuronidase activity. Values for total enzymic activity of the nitrocatechol sulphatases in canine white and gray matter were similar. Fractionation of homogenates from rat brain by differential centrifugations and separation of crude mitochondrial fractions by sucrose density gradient centrifugations revealed the following: (1) most of the nitrocatechol sulphatase activity (93 per cent) and all of the nitrophenyl sulphatase activity were sedimentable; (2) crude mitochondrial fractions exhibited the highest relative specific activity (RSA = 1·38) for the nitrocatechol sulphatases, whereas microsomal fractions displayed the highest RSA for nitrophenyl sulphatase (1·89); (3) the lightest fraction (A + B) and the densest fraction (E) from the sucrose density gradient contained most of the activity for both the type I and type II arylsulphatases, whereas the RSA of cytochrome oxidase was greatest in the intermediate density regions (fractions C and D); (4) the highest RSA for beta-glucuronidase and beta-glycerophosphatase occurred in gradient fraction C; (5) appreciable activity of beta-glycerophosphatase was found in a nerve ending fraction (M3). It is suggested that the hydrolases in heterogeneous tissue like brain might be associated with lysosomal particles of differing enzyme compositions and varying populations, and that the data on distribution lend credence to the concept of bimodal and possible trimodal particle affinity for the hydrolases of brain tissues.  相似文献   

19.
Sphingolipids, glycosylphosphatidylinositol (GPI)-anchored proteins, and certain signaling molecules segregate from bulk membrane lipids into lateral domains termed lipid rafts, which are often isolated based on their insolubility in cold nonionic detergents. During immunohistological studies of gangliosides, major sphingolipids of the brain, we found that cold Triton X-100 solubility is bidirectional, leading to histological redistribution from gray to white matter. When brain sections were treated with > or =0.25% Triton X-100 at 4 degrees C, ganglioside GD1a, which is normally enriched in gray matter and depleted in white matter, redistributed into white matter tracts. Incubation of brain sections from knockout mice lacking GD1a with wild-type sections in the presence of cold Triton X-100 resulted in GD1a redistribution from wild-type gray matter to knockout white matter. GM1, which is normally enriched in white matter, remained in white matter after cold detergent treatment and did not migrate to knockout mouse brain sections. However, when gray matter gangliosides were enzymatically converted into GM1 in situ, the newly formed GM1 transmigrated to knockout mouse brain sections in the presence of cold detergent. When purified GD1a was added to knockout mouse brain sections in the presence of cold Triton X-100, it preferentially incorporated into white matter tracts. These data demonstrate that brain white matter is a sink for gangliosides, which redistribute from gray matter in the presence of low concentrations of cold Triton X-100. A GPI-anchored protein, Thy-1, also transmigrated from wild-type to Thy-1 knockout mouse brain sections in the presence of detergent at 4 degrees C, although less efficiently than did gangliosides. These data raise technical challenges for using nonionic detergents in certain histological protocols and for isolation of lipid rafts from brain tissue.  相似文献   

20.
Recent brain research reveals a major role of trace elements in various diseases such as multiple sclerosis, Alzheimer's and Wilson's disease. The majority of published tissue concentrations dates back decades, and was assessed with various methods. Little is known about hemispherical differences, the correlation of trace elements or age-dependent changes in the human brain. Thus, the aim of this study was to examine trace element concentrations in different human brain regions after whole brain formalin fixation.549 samples of 13 brain regions were investigated in 11 deceased subjects without known history of brain pathology. Regional wet-to-dry mass ratios and concentrations of iron, copper, magnesium, manganese, calcium and zinc were determined using inductively coupled plasma mass spectrometry.Cortical gray matter revealed higher water content (wet-to-dry mass ratios 5.84–6.40) than white matter regions (wet-to-dry mass ratios 2.95–3.05). Element concentrations displayed specific regional differences. Good linear correlation of concentrations between elements was found for iron/copper as well as for manganese/magnesium (Spearman's rank correlation coefficient 0.74 and 0.65, respectively). Significant inter-hemispherical differences were found for copper in occipital white matter, for magnesium and calcium in putamen and for iron and copper in temporal white matter. An age dependent increase was seen in cortical gray matter for calcium, for magnesium in all regions except in cortical gray matter, for copper in substantia nigra and for zinc in occipital cortex.The presented trace element concentrations can serve as a fundamental basis for further brain research. Wet-to-dry mass ratios allow a comparison with reference data from other studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号