首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国660种陆生植物叶片8种元素含量特征   总被引:6,自引:0,他引:6  
秦海  李俊祥  高三平  李铖  李蓉  沈兴华 《生态学报》2010,30(5):1247-1257
对全国范围内120个样点660种陆生植物共1781个植物样本的叶片S、K、Na、Fe、Ca、SiO2、Al、Mn含量特征进行了研究。各元素的平均含量大小顺序为KCaSiO2NaSAlFeMn,总体上属于KCa型。与世界陆生植物平均元素含量相比较,我国植物叶片Na的含量偏高。除Ca在草本植物中的含量低于木本植物外,为满足快速生长的需要,S、K、Na、Fe、Ca、SiO2的含量草本植物木本植物、落叶植物常绿植物、阔叶植物针叶植物,而Mn的含量在这些功能组却刚好相反,Al的含量变化不大。S、K、SiO2在针叶林中的含量最低,S、Na、Fe在荒漠植物中的含量最高。Ca与SiO2、Al,以及Mn与除Al之外的其他6种元素之间均呈极显著负相关(P0.01),除此之外,植物元素含量间的相关关系都为极显著正相关(P0.01)。植物叶片元素含量与植物所处的地理位置的相关分析表明,S、K、Na、Fe、Ca、SiO2含量随纬度的增加而增加,Al、Mn随纬度的增加而减少;S、K、Na、Fe、SiO2、Al随经度的增加而减少,Mn随经度的增加而增加,而Ca与经度间相关性不显著。  相似文献   

2.
R. B. Clark 《Plant and Soil》1977,47(3):653-662
Summary Growth and P, K, Ca, Mg, Mn, Zn, Fe, and Cu concentrations and contents were determined in Al-tolerant and Al-intolerant corn (Zea mays L.) inbreds when grown at various levels of Al. B57 was more tolerant to Al than was Oh40B. Relatively low Al levels (up to 5 mg/l) enhanced B57 growth but inhibited Oh40B growth. With few exceptions, Oh40B root and leaf concentrations of the elements decreased with added Al. The decreases in element concentrations were not as large for B57 as they were for Oh40B. The Mg concentrations and contents decreased more than the other elements in all inbreds with added Al. Root Mg decreased more than leaf Mg. Total uptake of some elements were higher at low Al than with no Al. Inasmuch as Mg has a pronounced effect on root growth, low Mg may be an important response in plants sensitive to Al.Journal article No. 82-75 of Department of Agronomy, Ohio Agricultural Research and Development Center, Wooster, Ohio.Journal article No. 82-75 of Department of Agronomy, Ohio Agricultural Research and Development Center, Wooster, Ohio.  相似文献   

3.
Summary Aluminum toxicity is an important growth limiting factor for upland rice production on oxisols of cerrado region in Brazil. Data related to the effect of Al on uptake of nutrients for rice crop are limited. The effect of five Al concentrations (0, 10, 20, 40 and 60 ppm) in culture solution on the chemical composition of 30 upland rice cultivars was studied.Aluminum concentration and content in plant tissues were increased with higher levels of Al in all cultivar. In the roots Al content was higher as compared with the tops. Critical toxic level of Al in the tops of 21 days old plants varied from 100 to 417 ppm depending on the cultivars. Rice cultivars responded differently to Al treatments with respect to nutrients uptake. Increased Al concentrations in the solution exerted an inhibiting effect on the concentrations and contents of N, P, K, Ca, Mg, S, Na, Zn, Fe, Mn, B and Cu. Thus the inhibition was more effective for macronutrients in the plant tops in following order: Mg>Ca>P>K>N>S>Na. Whereas for micronutrients it was in the order of Mn>Zn>Fe>Cu>B. Morphological, physiological and biochemical effects of Al, toxicity responsible for the reduction in plant nutrient uptake, are discussed.  相似文献   

4.
Summary Kikuyu (Pennisetum clandestinium Hochst) grew relatively poorly on the Wollongbar krasnozem at soil pH values below 4.36. At these low pH values dry matter yields were increased by raising the pH or by application of high rates of phosphate. Both treatments decreased the concentration of soluble soil-Al on which the concentration of Al in tops was linearly dependent (r=0.95). The inverse relationship found between plant growth and Al concentration, when present in excess of ∼1.5 μg/g soil and ∼90 μg/g tops, is suggestive of Al toxicity. However, at Al concentrations causing severe yield reductions, the Ca concentration in kikuyu tops was approaching deficiency levels. The Al-Ca antagonism was further demonstrated by the reduction in Ca-uptake caused by increased concentrations of soluble soil-Al under constant conditions of exchangeable Ca and of pH. The yield-reducing effects of Al toxicity per se and Al-induced Ca deficiency are therefore confounded.  相似文献   

5.
Summary Aluminum toxicity resulted in abnormal root development with many short thick roots and was found at pH 4.3 with or without added Al. The toxicity of Mn was found with no added Mn, and with 50 and 100 ppm added Mn at pH values ranging from 4.0 to 4.7 and appeared as dark spots on the leaves. At pH values ranging from 5.8 to 6.0, no toxicity symptoms were recorded in the absence of added Mn. Al was more detrimental to seedling development than was Mn.No kernels developed at 25 and 50 ppm added Al at pH4.1. Such toxicity was associated with Al contents of 9.6 to 28.5 g/ml of saturated extract of soil. The highest kernel yields were recorded at pH 5.8 to 6.0 and were associated with 116 to 296 ppm Mn in tissue and of less than 0.1 g/ml of Al in the saturated extract. Increased rates of Mn and Al resulted in increased concentrations of Ca, Mg, and K in the saturated extract of soil. The results indicated that Al toxicity can be eliminated by liming to soil pH values of greater than 5.5; however, Mn toxicity may occur at pH values as high as 5.8 in the presence of large quantities of Mn.Contribution no. 274, Research Branch, Research Station, P. O. Box 1210, Charlottetown, P. E. I.  相似文献   

6.
Summary Effects of increasing rates of lime (0, 900, 1725, and 3000 kg Ca(OH)2/ha producing soil pH of 4.0, 4.7, 5.1 and 5.6) and P (50, 150, 250 and 350 kg P/ha) on top and root yield, root morphology and chemical composition of lotus (Lotus pedunculatus Cav.) and white clover (Trifolium repens L.), were studied, using an acid soil in a greenhouse experiment. Increasing rates of applied lime and phosphate resulted in substantial increases in top yields of both species but concomitant increases in root yield were small. In the unlimed soil, lotus out-yielded (tops and roots) white clover at all P levels. However, in the three limed treatments, white clover clearly out-yielded lotus. Yield response curves to applied P levelled off at the two highest lime rates for lotus but not for white clover. Nodulation and N content of white clover increased significantly with increasing lime applications, but for lotus there was a significant decrease in nodulation at the highest lime rate. Increased P rates had a small stimulatory effect on nodulation in both species. Of the total root weight, the percentage contribution of the tap and primary lateral root fractions was smaller and that of the secondary plus tertiary lateral roots was greater for lotus than for white clover although root length per unit weight tended to be larger for white clover at the two highest lime rates. Furthermore, lotus possessed longer and more numerous root hairs than white clover. Lime applications significantly decreased the percentage contribution of the tap and primary lateral roots to the total root weight and increased the percentage contribution of the secondary plus tertiary lateral roots. Al and Mn contents of tops and roots of both species decreased with increasing lime rates. There was a highly significant negative correlation between relative yield and Al content of lotus and white clover tops. In comparison with the limed treatments, in the unlimed treatments a greater percentage of total P, Al, Mn and N content accumulated in the roots of both species. In addition, lotus accumulated a much greater percentage Al in its roots than white clover.  相似文献   

7.
解瑞丽  周启星 《生态学杂志》2013,32(5):1347-1353
在浙江省临安市的雷竹主产区,分别采集不同竹龄(1~4 a)和不同器官(叶、枝、秆)的雷竹样品,分析了Si和其他营养元素含量、吸收和积累特征,以及Si和其他营养元素之间的相互关系.结果表明: 雷竹各器官中C含量的大小顺序为竹秆>竹枝>竹叶,Si、N、P、K、Ca、Mg、Al、Fe和Mn含量的大小顺序为竹叶>竹枝>竹秆.除Mn主要积累在竹叶中外,其他9种营养元素主要积累在1年生雷竹的秆中.3~4年生雷竹竹叶的Si平均含量为13.66 g · kg-1. 雷竹属于Si积累植物.随竹龄的增加,雷竹叶中的N、P、K和Mg含量减少,C、Al和Mn含量增加.雷竹对Si的吸收主要集中在第2年(57.1%),对N和K的吸收主要集中在前两年(67.7%~93.7%),此后N和K从植株体内流出,其流失量分别占总积累量的19.1%~39.1%.雷竹中Si与Ca、Al、Mn呈显著正相关,与N、P、K、Mg呈显著负相关.  相似文献   

8.
The efficiency of calcium in enhancing the tolerance of beans(Phaseolus vulgaris L.) to sodium salinization was studied inpot experiments in both cool and hot seasons. In the cool seasonincreased yields of dry matter, roots, nodules and pods werepositively correlated with increased Ca application and negativelycorrelated with the Na contents of irrigation water and planttissue. The Na levels both in roots and tops declined significantlyas increased amounts of calcium were added. Ca in the rangeof 2.0 to 8.0 mmol/1 caused competitive inhibition of Na uptakeand Na translocation. At Ca levels between 0 to 2.0 mM onlyNa translocation to tops was markedly inhibited. In warm seasonsCa had no beneficial effects on bean yields at any level ofNa. On the contrary, high rates of Ca application resulted ina higher death rate.  相似文献   

9.
Summary The influence of organic matter on the availability of 17 elements (Na, K, Cs137, Mg, Ca, Sr, Ba, N, P, B, Cu, Zn, Fe, Mn, Mo, Al, and Si) to barley seedlings grown by a modified Neubauer technique was determined. Three different soils that were treated with dry ground mustard spinach leaves (1 g/100 g soil) and incubated for various lengths of time (0, 1, 2, 5, 9, 13, and 17 weeks) in moist condition before cropping were used for this study.The addition of organic matter to the soils increased the plant yields. The average N and K concentrations were consistently increased in the plants grown in soils with added organic matter. The average concentration of B, P, Na, Mg, Sr, Ba, and Si were almost consistently decreased in the plants. The average contents of Cu, Zn, Fe, Mn, Mo, Ca, and Al varied with the soil types and precropping incubation time. The average Cs137 contents of the plants were reduced considerably by the addition of organic matter to the soils. The reduction of Cs137 contents ranged from 29 to 75 per cent, depending on the pre-cropping incubation time and soil type. The main factors causing this reduction were considered to be microbial immobilization, ion antagonism by K, carbohydrate dilution, and the state of decomposition and the kind of organic matter added to the soils.  相似文献   

10.
新疆南准噶尔荒漠优势植物的化学成分含量特点   总被引:4,自引:1,他引:3  
孔令韶  郭柯  王其兵 《生态学报》2002,22(8):1202-1210
南准噶尔荒漠 62种植物 8种元素的含量测定结果显示 ,含量算术平均值的大小顺序为 Na>K>Ca>S>P>Al>Fe>Mn,与阿拉善荒漠植物元素含量的顺序一致。其中 ,Mn、Fe、Al、Na、S的含量变异系数比 P、K和 Ca的大。植物元素含量之间相关分析结果表明 ,Fe与 Al、S与 P、Na与 S呈极显著正相关 ,表明荒漠植物对它们的吸收是协同的 ,而 Fe与 K显著负相关 ,表明植物对它们的吸收具有拮抗作用。聚类分析和排序结果说明不同生态功能群植物都有自身的元素含量特点 ,盐生植物 Na、S含量高 ,沙生植物为高 K低 Na含量功能群植物  相似文献   

11.
以一年生茶树扦插苗为材料,采用水培法研究了添加钙铝对茶叶主要化学品质及茶树钙、铝、锌、铁吸收积累的调控效应.结果表明:(1)适量铝(10或20mg·L-1)有利于提高茶叶茶多酚、咖啡碱、黄酮、可溶性总糖和氨基酸的含量;添加钙可提高上述化学成分的含量,且在高铝浓度(30mg·L-1)下提高的幅度最大.(2)适量的铝可促进茶树对铝和铁的吸收和积累,而高浓度的铝(30mg·L-1)抑制茶树对铝和铁的吸收与积累;添加铝可降低茶树根对钙和锌的吸收,但适量添加铝不影响茎和叶对钙和锌的积累.(3)添加钙可提高茶树体钙的含量,降低铝和锌的吸收与积累,但对铁的吸收与积累没有明显影响.研究表明,铝和钙可调控茶叶化学品质含量和茶树体微量元素的吸收;合理控制茶园土壤铝积累,并适量补充钙可能有利于提高茶叶品质,创建生态高值茶园.  相似文献   

12.
 本文论述了喀喇昆仑、昆仑山地区87种植物12个元素含量的特征。在含量水平上>10000ppm的元素有K,Ca,800—5000ppm的元素为Na、Mg,Fe、Al,10—100ppm的元素有Ba、Sr、Ti,Mn,V与Be的含量<10ppm。大多数植物Fe、V,Sr的含量高于一般的自然含量。植物中K含量的频数分布呈正态分布,其余元素的频数分布呈对数正态分布。不同植物种元素含量差异较大,Na的变异系数最大,Ca、Mg含量的变异系数最小。同种植物在不同地点元素含量有较大差异,不同植物种差异也不同。如紫花针茅(Stipa purpurea)>垫状驼绒藜(Ceratoides compacta)>鼠麴凤毛菊(Saussurea gnaphaloides)。植物中元素含量之间的相关分析表明,Fe、Al,V,Ti之间分别达极显著相关水平。用植物中12个元素的资料,对22种植物进行分类和排序,区分出Na,K型植物和Fe,Al,V,Ba型植物。  相似文献   

13.
Luwe  Michael W. F. 《Plant and Soil》1995,168(1):195-202
In a beech (Fagus sylvatica L.) stand in north-west Germany vegetation of two transects (25m:1m and 20m:1m) was mapped and contents of macronutrients (Ca, Mg and K), micronutrients (Fe, Mn, Zn and Cu), and potentially phytotoxic metals (Pb, Cd, Ni and Al) were measured in different soil compartments and in roots, rhizomes, stems and leaves of two forest floor plant species (Mercurialis perennis L. and Polygonatum multiflorum L.). NH4Cl extractable cation contents, pH and other soil variables were also determined.The highest macronutrient contents could be found in the leaves of M. perennis and P. multiflorum. Heavy metals and Al accumulated in the roots. Correlation analysis suggests a considerable translocation of Zn and Cd between below- and above-ground organs of both investigated forest floor plants. No significant correlation was found between the contents of the other elements in the below- and above-ground parts.Available data indicate a considerable uptake by the plants not only of nutrients, but also of heavy metals from the upper mineral soil. Amounts of heavy metals and Al solubilized in the presence of NH4Cl increased with decreasing pH, whereas levels of soluble Ca and Mg were maximal at high pH-values of the extracts. It can be concluded that element uptake in the investigated plants is indirectly controlled by the pH of the upper mineral soil.  相似文献   

14.
Liming and nutrient interactions in two Ultisols from Southern Nigeria   总被引:1,自引:0,他引:1  
Summary A short-term pot experiment was conducted to study the effects of liming on nutrient availability to maize plants grown in two acid Ultisols (Ustoxic Paleustult and Oxic Paleudult). Optimum P availability occurred between pH 5 and 6. Liming depressed uptake of Mg, Mn, and Zn by the plants. Maize grown in the Ustoxic Paleustult showed severe Mn deficiency when the soil was limed to near neutrality even though a moderate amount of Mn was applied.A laboratory incubation experiment showed that liming resulted in sharp decreases in soluble Mg, Mn and Zn in the soil, whereas the soluble K level was only slightly affected.Inadequate Ca supply appeared to be a more important factor affecting plant growth and nutrient uptake than Al toxicity in the coarse-textured Ultisols.IITA Journal Paper No. 66 IITA Journal Paper No. 66  相似文献   

15.
Summary Information is limited on soil contamination of leaves from field-grown row crops, especially with respect to aluminum (Al) analyses. The objective of this study was to determine the influence of washing leaf samples with either deionized water or detergent solution on elemental analyses for several agronomic crop plants. The crop plants sampled were corn (Zea mays L.), soybean (Glycine max L. Merr.), grain sorghum (Sorghum bicolor L. Moench), and wheat (Triticum aestivum L.). The crops were grown on a range of soil types, soil pH values, and tillage practices. Samples of upper leaves and lower leaves were collected separately. The samples were either not washed, washed with deionized water, or washed with detergent solution. After drying, grinding, and digesting, the samples were analyzed for Al, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). For all crop plants and conditions studied, there was no effect on measured N, P, K, Ca, Mg, Mn, Zn, or Cu concentrations, but measured Al and Fe concentrations were influenced by washing. In general, washing had a greater effect on Al analyses than on Fe analyses. Soybean samples were most affected by washing, while wheat samples seemed to be least affected. The results reflected greater contamination of lower leaves than upper leaves. Decontamination procedures appear necessary prior to Al and Fe analyses of field-grown crop plants.  相似文献   

16.
H. Ssali 《Plant and Soil》1981,62(1):53-63
Summary The effect of level of CaCO3, inoculation and lime pelleting on the nodulation, dry matter yield and % N content of common bean plants (Phaseolus vulgaris) grown in five acid soils was investigated in a greenhouse study. The soils represented a range in pH from 3.9 to 5.1, in exchangeable Al from 0.0 to 4 meq/100 gm, in exchangeable Mn from 0.35 to 2.32 me/100 gm, and in %C from 0.69 to 5.60.Nodule weight decreased with increasing %C and for the soil with highest %C (5.60) no nodules were observed. In soils with low organic matter and low exchangeable Al and Mn, inoculation increased nodule weight, dry matter yield and %N especially at the lowest pH level. Where the seeds were not inoculated, nodule weight and dry matter yield increased with soil pH. No such increases were observed where the seeds were inoculated. There was no apparent advantage in lime pelleting in such soils.In soils with low organic matter content and with substantial amounts of Al and/or Mn, liming increased nodule weight and dry matter yield, and decreased exchangeable Al and/or Mn. Lime pelleting was superior to mere inoculation in increasing nodule weight particularly at low lime rates.In soils with relatively high organic matter content, nodulation was very low or none at all. Low lime rates had little effect on exchangeable Al and Ca and dry matter yield. Higher lime rates, however, decreased exchangeable Al and dry matter yield but increased exchangeable Ca.  相似文献   

17.
Mistletoes offer a unique model to study interactions among Al and nutrients in vascular plants, because they grow and reproduce on hosts with distinct Al uptake strategies. We investigated Al distribution and nutrient relations of mistletoes on Al‐accumulating and non‐accumulating hosts. We hypothesised that mistletoes would exhibit similar leaf nutrient and Al concentrations as their host plants, but a strong compartmentalisation of Al when growing on Al‐accumulators. We measured concentrations of N, P, K, Ca, Mg, Cu, Fe, Mn, Zn in leaves and Al in leaves, seeds and branches of Phthirusa ovata and Psittacanthus robustus infecting Miconia albicans, an Al‐accumulator, and Ph. ovata infecting Byrsonima verbascifolia, a non‐Al‐accumulator. High leaf concentrations of Al in Ph. ovata only occurred while parasitizing the Al‐accumulating host; there was no accumulation in branches or seeds. In P. robustus, large concentrations of Al were found in leaves, branches and seeds. Mistletoe seed viability and leaf nutrient concentrations were not affected by Al accumulation. Passive uptake of Al, Ca, Mg, Mn and Cu in mistletoes was evidenced by significant correlations between mistletoes and host leaf concentrations, but not of N, P and K. Al was retranslocated to different plant organs in P. robustus, whereas it was mostly restricted to leaves in Ph. ovata. We suggest that Al might have some specific function in P. robustus, which only parasitizes Al‐accumulator hosts, while the host generalist Ph. ovata can be considered a facultative Al‐accumulator.  相似文献   

18.
The toxic conditions of Oxisol soils attributed to oranging symptoms of rice grown in the Sitiung Transmigration area, Sumatra, Indonesia were evaluated in the laboratory. Changes of pH and Eh of flooded soils, and concentrations of nutrients in the soils and in the rice plants were measured. The soils were clayey, kaolinitic, isohyperthermic, Typic Haplorthox. It was found that Eh of the soils sharply decreased from an average value of +460 ± 150 mV to –217 ± 15 mV following 60 days of flooding (DF). During the same period of flooding, soil pH increased from an average value of 5.2 ± 0.6 to 6.6 ± 0.2. Concentrations of NaOAc extractable Fe, Mn, Zn, Cu, Mo, Ca, Mg, P, and K, but not Al, increased markedly whereas their water-soluble form, except Fe, decreased slightly following 60 DF. Leaf tissue analyses indicated that 13, 51 and 58% of the rice plant samples contained potentially toxic level of Mn, Fe and Al, respectively, as their contents were higher than the assumed threshold toxicity levels of 2500, 300, and 300 mg kg–1. Thirteen, 16, 2, and 3% of the leaf tissue also contained potentially deficient levels of P, K, Ca, and Mg, respectively. The oranging symptom in the rice leaf tissue appeared to be due to indirect toxicity of Fe, Mn, and Al, i.e., Fe-induced, Mn-induced, and Al-induced deficiency of P, K, Ca and Mg. As a result of the relatively high concentrations of NaOAc extractable Fe, Mn, and Al in the soil solution, root growth was limited and coated with iron and manganese oxides thereby reducing the root's capacity to absorb nutrients from the soils.The work was supported by USAID Grant No. DPE-5542-G-SS-4055-00 (3.F-10). Contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511, USA.  相似文献   

19.
石山稀有濒危植物在迁地保护后的性状变异   总被引:8,自引:0,他引:8  
本文对比研究了7种石山稀有濒危植物在石灰岩土壤以及迁移到酸性土壤后的外形特征,生长发育习性及化学元素含量,结果表明,7种石山稀有濒危植物迁移到酸性土壤后发生了以下变化:1)外形变化主要表现为叶片变大变薄,有的植物种子或叶形有变化;2)迁移后开花,结实,落叶期晚1周以上,在气候条件相同的地区,营养生长期没有变化;3)植物体内的化学元素N,Zn,B,Al的含量增加20%以上,而Ca含量减少10%;4)Al的含量虽增加很多,但仍远低于酸性土壤中的植物;Ca的含量虽然减少,但仍高于酸性土壤植物;5)元素K,B的生物吸收系数在石灰岩土壤高于酸性土壤,其他元素N,P,Ca,Mg,Fe,Al,Mn,Zn的生物吸收系数则是酸性土壤高于石灰岩土壤。  相似文献   

20.
Plant-soil interactions associated with acid,weathered soils   总被引:1,自引:0,他引:1  
Plant-soil interactions in weathered soils are so complex that unqualified statements about a suitable pH for plants are risky. Conventional experimental designs and statistical methods may not be appropriate for investigating such complexities. Lime experiments using continuous function designs and observation of plant response to indigenous variability in soil pH permit detailed observations of plant-soil interactions that are frequently not detected. A graphical boundary-line approach to interpreting data can make good sense out of apparent confusion. Increasing the pH of variable-charge soils by adding lime or by indigenous means increased CEC and retarded cation leaching, but Ca solubility changed very little over the range pH 5 to 6. N fixation and yield was closely related to soil pH, soil Mn and Mn uptake by soybean. This result was clearly demonstrated regardless of numerous other limiting factors. Plant yield response curves resolved into distinct segments that corresponded with associated soil properties. Excess Al compounded by Ca deficiency is suspect in the pH range <5. Excess Mn, and Ca deficiency probably limited yields in the pH range 5.0 to 5.7. Yields were stable, and Ca and P were constant in the pH interval 5.7 to 6.0. Yields abruptly increased in the pH interval 6.0 to 6.3. This was associated with elevated Ca concentrations in soil solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号