首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of 24-epibrassinolide (EB) on the levels of endogenous hormones and photomorphogenesis of Arabidopsis thaliana (L.) Heynh wild-type (Ler) and mutant (hy4) seedlings. This mutant is deficient in the cryptochrome 1 (CRY1) synthesis. CRY1, which is a product of the HY4 gene, is a blue light photoreceptor in wild-type plants, but is sensitive to green light as well. In dark-grown seven-day-old mutant seedlings, the ABA/zeatin ratio differed from this ratio in wild-type seedlings. Thehy4 mutant exhibited a lower zeatin and higher free-ABA contents, which could retard its hypocotyl growth in darkness. EB retarded the growth of hypocotyls in etiolated hy4 seedlings and enlarged their cotyledons more efficiently than in wild-type seedlings. Green light (GL) did not affect the growth of hypocotyls but enlarged cotyledons of hy4 seedlings, which might be associated with some increase in the level of free IAA and a considerable decrease in free ABA and also with a decrease in the cytokinin level in seedlings. The hy4 cotyledon response to GL depended evidently on photoreceptors other than CRY1. GL enhanced the effects of EB on the morphogenesis of both Ler and hy4 seedlings, which was coupled with changes in the balance of endogenous IAA, ABA, and cytokinins. We may suppose that EB is involved in the control of photomorphogenesis by interaction with endogenous hormones, which are involved in the transduction of a light signal absorbed by the GL photoreceptors.  相似文献   

2.
The effects of blue light (BL) and jasmonic acid (JA) on morphogenesis of Arabidopsis thaliana (L.) Heynh seedlings of genotypes Col and Ler and their mutants, namely, axr1-3 and jar1-1 mutants resistant to IAA and JA, respectively, and a CRY1 photoreceptor-deficient mutant hy4 were studied. Both 1 μM JA and BL exposure retarded hypocotyl growth of Ler, Col, and jar1-1 seedlings, whereas JA had no effect on hypocotyl growth of axr1-3, but the suppression of hypocotyl growth of this mutant by BL was even more noticeable than that of Ler, Col, and jar1-1. JA and BL applied simultaneously inhibited hypocotyl growth of axr1-3 and especially of Ler, Col, and jar1-1 more than either of factors applied separately. The hy4 mutant did not respond to BL, whereas JA stimulated its hypocotyl growth. JA did not change the cotyledon size of Col, axr1-3, and jar1-1 and reduced the cotyledon size of Ler and hy4. BL enhanced the cotyledon growth of all wild-type and mutant plants used in the study. The cotyledon sizes of all plants except Ler were also increased when JA and BL were applied together. Some of the growth responses correlated with the endogenous IAA and ABA contents. Thus, for example, the hypocotyl and cotyledon growth retardation of Ler seedlings in the presence of JA correlated with a reduced level of free IAA and a considerable increase in the free ABA level in plants grown both in darkness and in BL. Under other growth conditions, no correlation between the endogenous IAA and ABA levels and A. thaliana seedling growth was noted. The interaction between the signal transduction pathways triggered by BL and JA at the early stages of arabidopsis morphogenesis is discussed on the basis of Col, Ler, axr1-3, and jar1-1 hypocotyl growth responses.  相似文献   

3.
Transgenic Arabidopsis thaliana plants constitutively expressing Agrobacterium tumefaciens tryptophan monooxygenase (iaaM) were obtained and characterized. Arabidopsis plants expressing iaaM have up to 4-fold higher levels of free indole-3-acetic acid (IAA) and display increased hypocotyl elongation in the light. This result clearly demonstrates that excess endogenous auxin can promote cell elongation in a whole plant. Interactions of the auxin-overproducing transgenic plants with the phytochrome-deficient hy6-1 and auxin-resistant axrl-3 mutations were also studied. The effects of auxin overproduction on hypocotyl elongation were not additive to the effects of phytochrome deficiency in the hy6-1 mutant, indicating that excess auxin does not counteract factors that limit hypocotyl elongation in hy6-1 seedlings. Auxin-overproducing seedlings are also qualitatively indistinguishable from wild-type controls in their response to red, far-red, and blue light treatments, demonstrating that the effect of excess auxin on hypocotyl elongation is independent of red and blue light-mediated effects. All phenotypic effects of iaaM-mediated auxin overproduction (i.e. increased hypocotyl elongation in the light, severe rosette leaf epinasty, and increased apical dominance) are suppressed by the auxin-resistant axr1-3 mutation. The axr1-3 mutation apparently blocks auxin signal transduction since it does not reduce auxin levels when combined with the auxin-overproducing transgene.  相似文献   

4.
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by -naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.  相似文献   

5.
We reported earlier that boron stimulates hypocotyl growth in several Arabidopsis ecotypes but not in the boron-deficient mutant bor1-1. Others have shown that boron influences the metabolism and transport of the plant hormone auxin. We investigated how boron, in interaction with light, influences Arabidopsis hypocotyl growth responses to the exogenous auxins 1-NAA, 2,4-D and IAA. In either light condition, 1-NAA similarly inhibited hypocotyl growth in bor1-1 and the corresponding WT (Col-0), while in both genotypes, boron did not essentially affect the extent of the inhibition. Whatever the light conditions and in the absence of boron, 2,4-D inhibited hypocotyl elongation in WT, while in BL seedlings, high responsiveness to 2,4-D vanished when boron was added to the culture medium. Hypocotyl of bor1-1 seedlings in all boron concentrations tested and grown in the dark or RL responded to the auxin similar to WT plants. In BL, the mutant hypocotyls retained full sensitivity to 2,4-D at 0.1 mM H3BO3 but lost that sensitivity by 2 mM. In both genotypes tested, in the dark or RL, IAA inhibited hypocotyl growth. Conversely, IAA stimulated hypocotyl elongation in both genotypes developed in BL at 0.1 mM H3BO3. That stimulation disappeared when the boron supply increased to 2 mM. Our results suggest that specifically in BL, boron reduces hypocotyl responsiveness to auxins 2,4-D or IAA via the functional transporter BOR1. Our results lead to a discussion of how BL and BOR1 influence the mechanisms of auxin transport into and out of the cell.  相似文献   

6.
We studied the role of cryptochrome 1 (CRY1) and phytochromes in the photomorphogenetic responses of plants to the middle-wavelength region of photosynthetically active radiation. A comparison was performed of green light (GL) action on growth, GA activity and IAA and ABA contents during seedling deetiolation of two Arabidopsis thaliana (L.) Heynh lines of Landsnerg erecta ecotype (wild type Ler and mutant hy4) and of Phaseolus vulgaris L. It was shown that a growth responses of Ler hypocotyls to GL of 515 nm and Ler cotyledons to GL of 542 nm were weaker than those of the hy4 mutant defected in the CRY1 synthesis. Far-red light (730 nm) neutralized the effect of GL (533 nm) on the phytohormone balance in the primary kidney bean leaves. The data obtained permit a supposition that plants possess several photoregulatory systems functioning under GL of higher (515 nm) and lower emission energy (542–553 nm). A possible operation of GL receptors, other than cryptochrome 1 and phytochromes, is discussed.  相似文献   

7.
A majority of the cells in the Arabidopsis hypocotyl undergo endoreduplication. The number of endocycles in this organ is partially controlled by light. Up to two cycles occur in light-grown hypocotyls, whereas in the dark about 30% of the cells go through a third cycle. Is the inhibition of the third endocycle in the light an indirect result of the reduced cell size in the light-grown hypocotyl, or is it under independent light control? To address this question, the authors examined the temporal and spacial patterns of endoreduplication in light- or dark-grown plants and report here on the following observations: (i) during germination two endocycles take place prior to any significant cell expansion; (ii) in the dark the third cycle is completed very early during cell growth; and (iii) a mutation that dramatically reduces cell size does not interfere with the third endocycle. The authors then used mutants to study the way light controls the third endocycle and found that the third endocycle is completely suppressed in far red light through the action of phytochrome A and, to a lesser extent, in red light by phytochrome B. Furthermore, no 16C nuclei were observed in dark-grown constitutive photomorphogenic 1 seedlings. And, finally the hypocotyl of the cryptochrome mutant, hy4, grown in blue light was about three times longer than that of the wild-type without a significant difference in ploidy levels. Together, the results support the view that the inhibition of the third endocycle in light-grown hypocotyls is not the consequence of a simple feed-back mechanism coupling the number of cycles to the cell volume, but an integral part of the phytochrome-controlled photomorphogenic program.  相似文献   

8.
9.
The roles of phytochrome A (phyA), phytochrome B (phyB) and a putative blue-light (BL) photoreceptor (HY4) in the control of hypocotyl growth by natural radiation were investigated using phyA, phyB and hy4 mutants of Arabidopsis thaliana. Full sunlight inhibited hypocotyl growth to a larger extent in wild-type (WT) than in phyA, phyB and, particularly, hy4 seedlings. In WT seedlings, hypocotyl growth was promoted by selectively lowering BL irradiance, lowering red-light (R) plus far-red-light (FR) irradiance or lowering the R/FR ratio (which was achieved either by increasing FR or by reducing R). The effects of lowering BL were reduced in hy4 and exaggerated in phyA seedlings. The effects of lowering R+FR were reduced in phyA and exaggerated in hy4 seedlings. Neither phyB nor hy4 mutants responded to low R/FR ratios. Neighbouring plants reflecting FR without shading caused subtle reductions of the R/FR ratio. This signal promoted hypocotyl growth in WT but not in phyA, phyB or hy4 seedlings. Intermediate canopy shade produced similar effects in all genotypes. Under deep shade, de-etiolation was severely impaired in phyA seedlings, which died prematurely. Thus, the FR ‘high-irradiance reaction’ mediated by phyA could be important for seedling survival under dense canopies.  相似文献   

10.
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation.  相似文献   

11.
Phototropic stimulation of dark-grown hypocotyls of Arabidopsis thaliana increased a growth inhibitor in the wild-type but not in the non-phototropic nph3-101 mutant. From light-grown wild-type shoots the inhibitor was isolated and identified as indole-3-acetonitrile (IAN) from its 1H NMR spectrum. The content of endogenous IAN in the hypocotyls of wild-type and mutant unilaterally exposed to blue light was determined using a physicochemical assay. The IAN concentration (28 M) in the phototropically stimulated wild-type hypocotyls was about three times larger than in the dark control. However, its content in the mutant hypocotyls did not change. IAN inhibited the hypocotyl growth of the nph3-101 to the same extent as in the wild-type at concentrations higher than 10 M. These results suggest that IAN plays a role in the phototropism of Arabidopsis thaliana hypocotyls.  相似文献   

12.
High fluence-rate blue light (BL) rapidly inhibits hypocotyl growth in Arabidopsis, as in other species, after a lag time of 30 s. This growth inhibition is always preceded by the activation of anion channels. The membrane depolarization that results from the activation of anion channels by BL was only 30% of the wild-type magnitude in hy4, a mutant lacking the HY4 BL receptor. High-resolution measurements of growth made with a computer-linked displacement transducer or digitized images revealed that BL caused a rapid inhibition of growth in wild-type and hy4 seedlings. This inhibition persisted in wild-type seedlings during more than 40 h of continuous BL. By contrast, hy4 escaped from the initial inhibition after approximately 1 h of BL and grew faster than wild type for approximately 30 h. Wild-type seedlings treated with 5-nitro-2-(3-phenylpropylamino)-benzoic acid, a potent blocker of the BL-activated anion channel, displayed rapid growth inhibition, but, similar to hy4, these seedlings escaped from inhibition after approximately 1 h of BL and phenocopied the mutant for at least 2.5 h. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid and the HY4 mutation were not additive. Taken together, the results indicate that BL acts through HY4 to activate anion channels at the plasma membrane, causing growth inhibition that begins after approximately 1 h. Neither HY4 nor anion channels appear to participate greatly in the initial phase of inhibition.  相似文献   

13.
Aldehyde oxidase (AO; EC 1.2.3.1) activity was measured in seedlings of wild type or an auxin-overproducing mutant, superroot1 (sur1), of Arabidopsis thaliana. Activity staining for AO after native polyacrylamide gel electrophoresis separation of seedling extracts revealed that there were three major bands with AO activity (AO1–3) in wild-type and mutant seedlings. One of them (AO1) had a higher substrate preference for indole-3-aldehyde. This AO activity was significantly higher in sur1 mutant seedlings than in the wild type. The difference in activity was most apparent 7 d after germination, the same time required for the appearance of the remarkable sur1 phenotype, which includes epinastic cotyledons, elongated hypocotyls, and enhanced root development. Higher activity was observed in the root and hypocotyl region of the mutant seedlings. We also assayed the indole-3-acetaldehyde oxidase activity in extracts by high-performance liquid chromatography detection of indole-3-acetic acid (IAA). The activity was about 5 times higher in the extract of the sur1 seedlings, indicating that AO1 also has a substrate preference for abscisic aldehyde. Treatment of the wild-type seedlings with picloram or IAA caused no significant increase in AO1 activity. This result suggested that the higher activity of AO1 in sur1 mutant seedlings was not induced by IAA accumulation and, thus, strongly supports the possible role of AO1 in IAA biosynthesis in Arabidopsis seedlings.  相似文献   

14.
The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10o curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 · g, compared with 14o in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70–80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.Abbreviations PAR photosynthetically active radiation - PAS periodic acid-Schiff's reagent - PGM phosphoglucomutase - WT wild-type  相似文献   

15.
Photomorphogenetic responses have been studied in a cucumber (Cucumis sativus L.) mutant (lh), which has long hypocotyls in white light (WL). While etiolated seedlings of this mutant have a similar phytochrome content and control of hypocotyl elongation as wild type, deetiolation is retarded and WL-grown seedlings show reduced phytochrome control. Spectrophotometric measurements exhibit that WL-grown tissues of the lh mutant (flower petals and Norflurazon-bleached leaves) contain 35 to 50% of the phytochrome level in the wild type. We propose that this is a consequence of a lack of light-stable phytochrome, in agreement with our hypothesis proposed on the basis of physiological experiments. The lh mutant lacks an end-of-day far-red light response of hypocotyl elongation. This enables the end-of-day far-red light response, clearly shown by the wild type, to be ascribed to the phytochrome, deficient in the lh mutant. Growth experiments in continuous blue light (BL) and continuous BL + red light (RL) show that when RL is added to BL, hypocotyl growth remains inhibited in the wild type, whereas the lh mutant exhibits significant growth promotion compared to BL alone. It is proposed that the hypocotyls fail to grow long in low fluence rate BL because photosynthesis is insufficient to sustain growth.  相似文献   

16.
17.
We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.  相似文献   

18.
Ethylene and gibberellins have a synergistic stimulatory effect on hypocotyl elongation of light-grown Arabidopsis thaliana (L.) Heynh. seedlings. A screen for mutants with decreased response to these hormones led to the isolation of a novel allele (amp1-7) of the ALTERED MERISTEM PROGRAM (AMP) 1 locus. The amp1-7 allele contains a missense mutation causing a phenotype, which is weaker than that of the amp1-1 mutant that carries a nonsense mutation. The mutant phenotype prompted the hypothesis that AMP1 is involved in ethylene and GA signalling pathways or in a parallel pathway-controlling cell and hypocotyl elongation and cellular organization. Amp1 mutants contain higher zeatin concentrations causing enlargement of the apical meristem, which was confirmed by cytokinin application to wild type seedlings. Light grown amp1 seedlings have shorter hypocotyls than wild type; however, application of cytokinins promotes hypocotyl elongation of both Col-0 and amp1. We suggest that in amp1 mutants either zeatin overproduction or its action is strictly localized. Nelson J. M. Saibo and Wim H. Vriezen contributed equally to this work.  相似文献   

19.
We previously reported a photomorphogenic mutation of Arabidopsis thaliana, shy2–1D, as a dominant suppressor of a hy2 mutation. Here, we report that shy2–1D confers various photo-responsive phenotypes in darkness and the dark phenotypes of the mutant are affected by phytochrome deficiency. Dark-grown seedlings of the mutant developed several photomorphogenic characteristics such as short hypocotyls, cotyledon expansion and opening, and partial differentiation of plastids. When grown further in darkness, the mutant plant underwent most of the developmental stages of a light-grown wild-type plant, including development of foliar leaves, an inflorescence stem with cauline leaves, and floral organs. In addition, two light-inducible genes, the nuclear-encoded CAB and the plastid-encoded PSBA genes, were highly expressed in the dark-grown mutant seedlings. Furthermore, reduced gravitropism, a phytochrome-modulated response, was observed in the mutant hypocotyl in darkness. Thus, shy2–1D is one of the most pleiotropic photomorphogenic mutations identified so far. The results indicate that SHY2 may be a key component regulating photomorphogenesis in Arabidopsis. Surprisingly, double mutants of the shy2–1D mutant with the phytochrome-deficient mutants hy2, hy3 (phyB-1) and fre1–1 (phyA-201) showed reduced photomorphogenic response in darkness with a longer hypocotyl, a longer inflorescence stem, and a lower level expression of the CAB gene than the shy2–1D single mutant. These results showed that phytochromes function in darkness in the shy2–1D mutant background. The implications of these results are discussed.  相似文献   

20.
UV-B-induced photomorphogenesis in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Relatively little is known about the types of photomorphogenic responses and signal transduction pathways that plants employ in response to ultraviolet-B (UV-B, 290–320 nm) radiation. In wild-type Arabidopsis seedlings, hypocotyl growth inhibition and cotyledon expansion were both reproducibly promoted by continuous UV-B. The fluence rate response of hypocotyl elongation was examined and showed a biphasic response. Whereas photomorphogenic responses were observed at low doses, higher fluences resulted in damage symptoms. In support of our theory that photomorphogenesis, but not damage, occurs at low doses of UV-B, photomorphogenic responses of UV-B sensitive mutants were indistinguishable from wild-type plants at the low dose. This allowed us to examine UV-B-induced photomorphogenesis in photoreceptor deficient plants and constitutive photomorphogenic mutants. The cry1 cryptochrome structural gene mutant, and phytochrome deficient hy1, phyA and phyB mutant seedlings resembled wild-type seedlings, while phyA/phyB double mutants were less sensitive to the photomorphogenic effects of UV-B. These results suggest that either phyA or phyB is required for UV-B-induced photomorphogenesis. The constitutive photomorphogenic mutants cop1 and det1 did not show significant inhibition of hypocotyl growth in response to UV-B, while det2 was strongly affected by UV-B irradiation. This suggests that COP1 and DET1 work downstream of the UV-B signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号