首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
不同品系小菜蛾成虫脑突触体 蛋白质磷酸化的研究   总被引:2,自引:0,他引:2  
对小菜蛾Plutella xylostella(L.)敏感品系、抗溴氰菊酯品系、抗杀虫双品系和抗杀螟丹品系的成虫脑突触体蛋白质磷酸化进行了研究比较。结果表明:蛋白质磷酸化在各个品系中的表现是不一样的。cAMP和钙加钙调蛋白对不同品系小菜蛾脑蛋白质磷酸化都有不同程度的刺激作用;3种杀虫剂均对各品系小菜蛾的磷酸化反应有影响,杀虫双、杀螟丹表现为抑制,溴氰菊酯表现为加强。这种影响在敏感品系中表现得比抗性品系中要强烈。  相似文献   

2.
成纤维细胞生长因子受体(FGFR)介导的SNT1(亦称为FRS2)底物磷酸化具有宿主细胞以及受体特异性。为探明这种宿主细胞特异性的决定因素,我们构建了1个FGFR2Ⅲb/R1嵌合受体。该嵌合受体具有1个FGFR2Ⅲb的胞外片段及1个FGFR1蛋白质酪氨酸激酶片断。当表达在3T3细胞(内源性受体为FGFR1并能强烈响应FGFR1的信号)以及DTE-R1/100细胞时,该嵌合受体能即刻诱导SNT1磷酸化。DTE-R1/100细胞为经长期培养的带有外源性FGFR1的非恶性前列腺肿瘤上皮细胞(DTE)并已获得未转化DTE细胞所不具备的FGFR1信号响应性。与此相反,当表达在非转化DTE细胞或未经长期培养的FGFR1转化细胞(DTE-R1)时,FGFR2Ⅲb/R1嵌合受体则无法诱导SNT1磷酸化。我们曾报导DTE细胞对FGFR1介导的SNT1磷酸化活力及其刺激细胞生长信号的响应性是一种获得性的性质,这种性质的获得与细胞恶化是紧密联系在一起的。在此我们进一步证明FGFR介导的SNT1磷酸化具有宿主细胞特异性。这些结果表明细胞内围绕着激酶的微环境而不是细胞外环境决定了SNT1是否可为FGFR1所磷酸化。而且,长期受外源性FGFR1刺激诱发DTE细胞内微环境的变化,从而使表达在DTE细胞里的FGFR1激酶可强烈地磷酸化SNT1。  相似文献   

3.
潘瑞琴  冷欣夫 《动物学报》1998,44(2):179-185
研究了神经毒性杀虫剂———溴氰菊酯对体内源性蛋白质磷酸化作用的影响。结果表明,浓度为10-5mol/L溴氰菊酯明显抑制正常鸡和经三甲基苯基磷酸酯处理的鸡脑突触膜中55kD和60kD两种蛋白的磷酸化。而025mmol/LCa2+加025mmol/L的钙调蛋白则明显地促进这两种蛋白质的磷酸化,但较低浓度(10-6mol/L)时,溴氰菊酯明显抑制48kD蛋白的磷酸化。而003mmol/LCa2+加003mmol/L的钙调蛋白则明显地增强48kD和45kD两种蛋白的磷酸化。此外,还发现溴氰菊酯可抑制鸡脑突触膜中CaATP酶活力。  相似文献   

4.
角质细胞生长因子 2 (KGF 2 )也叫成纤维细胞生长因子 10 (FGF 10 ) ,是成纤维细胞生长因子家族的一员 .能特异性促进上皮细胞的增殖、分化和迁移 ,对脊椎动物多种组织和器官的发育起重要调控作用 ,对临床上多种疾病的治疗也有很好的应用前景 .1 KGF 2与受体KGF 2有两种细胞膜表面受体 :FGFR1Ⅲb和FGFR2Ⅲb .KGF 2与FGFR2Ⅲb的亲和力很高 ,而与FGFR1Ⅲb的亲和力很低 ,只有在高浓度KGF 2存在时才与FGFR1Ⅲb结合 .KGF 2与受体结合后 ,促使受体胞内的C端酪氨酸残基磷酸化 ,磷酸化的受体具有了酪氨酸蛋白激酶活性 ,并与一系…  相似文献   

5.
为挖掘草鱼关键抗性分子,研究利用4D label-free定量蛋白质组学技术系统分析了团队前期获得的GCRV感染存活草鱼(候选抗性草鱼)与对照草鱼的血清蛋白表达差异。共鉴定到858个草鱼血清蛋白, 329个蛋白在两类草鱼中差异表达,其中163个蛋白在候选抗性草鱼血清中显著高表达, 166个蛋白显著低表达。差异表达蛋白的功能主要注释为体液免疫反应调节相关蛋白,显著富集到补体凝血级联、细胞黏附和铁死亡等信号通路。对差异表达的免疫相关蛋白进行分析发现,候选抗性草鱼血清中体液免疫分子MASP2、C4a、C4b、C7b、C8b、C8g、C9、CFI、C3a.1、C3a.2、C3a.3和C3a.6等补体和抗原提呈相关免疫分子MHC1UBA和IGL4V8等蛋白表达水平显著高于对照草鱼,而T细胞免疫相关分子TRAV、IGHV1-1、IGHV2-1、IGHV6-1、IGHV3-2和IGHV11-2等蛋白表达水平显著低于对照草鱼。免疫印迹检测进一步证实,以C3和IgM为代表的体液免疫分子在候选抗性草鱼血清中显著高表达,可能与草鱼抗病能力关联。研究将为高抗性草鱼的选育提供可参考的分子资源。  相似文献   

6.
潘瑞琴  冷欣夫 《动物学报》1998,44(2):179-185
研究了神经毒性杀虫剂-溴氰菊酯对体内源性蛋白质磷酸化作用的影响。结果表明,浓度为10^-5mol/L溴氰菊酯明显抑制正常鸡和经三甲基苯基磷酸酯处理的鸡脑突触膜中55kD和60kD两种蛋白的磷酸化。  相似文献   

7.
玉米早期花药蛋白质组和磷酸化蛋白质组分析   总被引:1,自引:0,他引:1  
蛋白质磷酸化修饰是调控其功能的一种重要方式。植物有性生殖过程在农作物产量形成和物种繁衍过程中起着重要作用。作为植物雄性生殖器官的花药,其正常生长发育对于保证形成功能性配子(花粉)以及完成双受精过程至关重要。本研究以重要农作物玉米(B73)为材料,利用Nano UHPLC-MS/MS质谱技术对玉米早期发育的花药在蛋白质组和磷酸化蛋白质组水平进行全面分析,以探究玉米花药发育过程中的蛋白调控网络和磷酸化修饰调控网络。在蛋白质组学分析中,共鉴定到了3 016个多肽,匹配到1 032个蛋白质上。通过Map Man分析,预测到了一些和花药发育相关的蛋白质,例如受体激酶(GRMZM2G082823_P01、GRMZM5G805485_P01等)。另外,在磷酸化蛋白质组学研究中,通过对Ti O2亲和层析富集到的磷酸化多肽进行质谱分析,检测到了257个磷酸化多肽,匹配到210个蛋白质上。我们的数据揭示了玉米花药发育过程中的223个磷酸化位点。与已发现的玉米中的86个磷酸化蛋白质(植物蛋白磷酸化数据库(P3DB):http://www.p3db.org/organism.php)相比,其中203个磷酸化蛋白和218个磷酸化位点为首次揭示。进一步生物信息学分析表明:磷酸化在14-3-3蛋白质、激酶、磷酸酶、转录因子、细胞周期和染色质结构相关的蛋白质介导的玉米早期花药发育过程中起着重要的调控作用。总之,本研究首次在蛋白质组学和磷酸化蛋白质组学水平研究了玉米早期花药发育的蛋白质调控网络,不仅丰富了玉米蛋白质和磷酸化修饰蛋白质数据库,并为利用遗传学和生物化学手段深入研究玉米花药发育的分子调控机理提供了基础。  相似文献   

8.
磷脂酶D(PLD)催化卵磷脂(Phosphatidylc holine,PC)水解产生胆碱(Choline)和磷脂酸(Phosphatidic acid,PA),其代谢产物参与调控细胞内许多生理和生化过程。在过表达磷脂酶D3(PLD3)的成肌细胞(C2C12细胞)中,研究了PLD3对胰岛素刺激后Akt通路激活的影响。研究结果表明,PLD3过表达细胞的Akt磷酸化水平比对照组低,并且不受胰岛素浓度变化的调控。虽然PLD3过表达细胞中Akt磷酸化水平随胰岛素刺激时间的延长而有所增加,但磷酸化总水平比对照组低。磷脂酶D抑制剂丁-1醇能够抑制对照组胰岛素刺激下Akt磷酸化,却不能抑制PLD3过表达细胞的Akt磷酸化,并且PLD3过表达细胞Akt磷酸化水平比对照组高6倍。用磷脂酸(PA)做刺激时,对照组的Akt磷酸化明显增加,而PLD3过表达细胞株的Akt磷酸化没有显著变化;用PA和胰岛素同时刺激时,PLD3过表达株和对照组的Akt磷酸化均比PA单独刺激时降低。这说明PLD3的过表达抑制成肌细胞内胰岛素信号的传导。  相似文献   

9.
泛素化和磷酸化协同作用调控蛋白质降解   总被引:1,自引:0,他引:1  
在真核细胞中,泛素化和磷酸化是2种常见的蛋白质修饰方式。泛素在蛋白酶体降解途径中发挥重要的靶向作用,细胞外信号严格调控着目的蛋白的泛素化。在很多情况下,这种调控依赖于蛋白质的磷酸化。由磷酸化影响的调控步骤可能与E3泛素连接酶对底物的识别有关,也可能与实际的交联反应有关。这种调控是通过对底物或E3连接酶本身的磷酸化实现的。  相似文献   

10.
粳稻 (OryzasativaL .ssp .japonica)和籼稻 (O .sativassp .indica)对光抑制的敏感程度存在差异 ,它们的叶绿体光反应中心Ⅱ核心蛋白D1的稳定性不同。以菌落原位杂交法克隆了粳稻“95 16”和籼稻“籼优 6 3”叶绿体D1蛋白的编码基因psbA。核苷酸序列同源比较显示 :两者在启动子区和 5′_UTR完全相同 ;编码区存在着个别碱基的差异 ,但均位于三联体密码的第三位 ,不影响氨基酸编码特性 ,在蛋白质氨基酸序列上没有差异 ;在 3′_UTR内存在寡聚U长度的差异。因此 ,粳稻和籼稻D1蛋白对光抑制作用敏感性的差异与其蛋白质的氨基酸序列结构无关 ,可能与调控psbA基因表达的上游因子或光保护机制的差异有关。  相似文献   

11.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Intrinsic protein phosphorylation was studied in synaptosomal membrane fragments made from cerebral cortex tissue taken from the following species: human (biopsy specimens), ox, rat, rabbit, guinea pig and mouse. Membrane fragments from all species exhibited a qualitatively similar range of protein acceptors phosphorylated by cyclic AMP-dependent protein kinase activity; contrary to a previous report, no evidence for cyclic GMP-dependent protein kinase activity was found in the human material. With the exception of membrane fragments prepared from ox brain, all the preparations exhibited the same range of Ca2+-dependent protein kinase activity. Ox brain obtained from a slaughterhouse yielded membranes containing no Ca2+-dependent protein kinase activity, but this may have been due to unavoidable postmortem losses.  相似文献   

13.
The phosphorylation of rat brain microtubule protein on intracranial injection of labeled phosphate has been analyzed. The major microtubule protein components phosphorylated in vivo in rat brain are the high-molecular-weight microtubule-associated proteins (MAPs) MAP-1A, MAP-1B, and MAP-2. A slight phospholabeling of beta-tubulin, which corresponds to the phosphorylation of a minor neuronal beta-tubulin isotype, is also observed. Whereas MAP-1B, MAP-2, and beta-tubulin are phosphorylated in the brain of 5-day-old rat pups, when most neurons of the CNS are extending processes, MAP-1A phosphorylation is observed only after neuronal maturation takes place. The phosphorylation of MAP-1A, MAP-1B, and beta-tubulin may be due mainly to casein kinase II or a related enzyme, whereas MAP-2 appears to be modified by other enzymes such as the cyclic AMP-dependent protein kinase (protein kinase A) and the calcium/phospholipid-dependent protein kinase (protein kinase C). Microtubule protein phosphorylation has also been studied in neuronal cultures. In differentiated neuroblastoma cells, only MAP-1B and beta-tubulin are phosphorylated in a manner coupled to neurite outgrowth. In primary cultures of fetal rat brain neurons, the pattern of microtubule protein phosphorylation resembles that found in vivo in rat pup brain. As phosphorylated MAP-1A and MAP-1B are present mainly on assembled microtubules, whereas the phosphorylation of MAP-2 decreases its interaction with microtubules, a role can be suggested for the phosphorylation of these proteins in the regulation of microtubule assembly and disassembly during neuronal development.  相似文献   

14.
Depolarization of synaptosomes is known to cause a calcium-dependent increase in the phosphorylation of a number of proteins. It was the aim of this study to determine which protein kinases are activated on depolarization by analyzing the incorporation of 32Pi into synaptosomal phosphoproteins and phosphopeptides. The following well-characterized phosphoproteins were chosen for study: phosphoprotein "87K," synapsin Ia and Ib, phosphoproteins IIIa and IIIb, the catalytic subunits of calmodulin kinase II, and the B-50 protein. Each was initially identified as a phosphoprotein in lysed synaptosomes after incubation with [gamma-32P]ATP. Mobility on two-dimensional polyacrylamide gels and phosphorylation by specific protein kinases were the primary criteria used for identification. A technique was developed that allowed simultaneous analysis of the phosphopeptides derived from all of these proteins. Phosphopeptides were characterized in lysed synaptosomes after activating cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases in the presence of [gamma-32P]ATP. Phosphoproteins labelled in intact synaptosomes after incubation with 32Pi were then compared with those seen after ATP-labelling of lysed synaptosomes. As expected from previous work, phosphoprotein "87K," and synapsin Ia and Ib were labelled, but for the first time, phosphoproteins IIIa, IIIb, and the B-50 protein were identified as being labelled in intact synaptosomes; the calmodulin kinase II subunits were hardly phosphorylated. From a comparison of the phosphopeptide profiles it was found that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases are all active in intact synaptosomes and their activity is dependent on extrasynaptosomal calcium. The activation of cyclic AMP-stimulated protein kinases in intact synaptosomes was confirmed by the addition of dibutyryl cyclic AMP and theophylline which specifically increased the labelling of phosphopeptides in synapsin Ia and Ib and in phosphoproteins IIIa and IIIb. On depolarization of intact synaptosomes, a number of phosphopeptides showed increased labelling and the pattern suggested that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases were all activated. No new peptides were phosphorylated, suggesting that depolarization simply increased the activity of already active protein kinases and that there was no depolarization-specific increase in protein phosphorylation.  相似文献   

15.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

16.
The presence of a protein kinase capable of phosphorylating endogenous as well as exogenously added myelin basic proteins has been demonstrated in a myelin-like membrane fraction isolated from reaggregating and surface adhering, primary cultures of cells dissociated from embryonic mouse brain. Only the large and small components of myelin basic proteins were found to be phosphorylated when myelin-like membrane fraction was incubated with [-32P]ATP. The protein kinase endogenous to the myelin-like membrane fraction was mainly of the cyclic AMP independent type. There was very little cyclic AMP dependent or cyclic GMP dependent protein kinase activities in this myelin-like fraction. Although the myelin basic proteins were the only endogenous proteins phosphorylated, protein kinase of the myelin-like membrane was capable of catalyzing the phosphorylation of exogenous substrates, such as histones.  相似文献   

17.
Abstract: The effect of protein kinase A on the catalytic activity and phosphorylation of brain tryptophan hydroxylase was examined. Stimulation of endogenous protein kinase A by cyclic AMP or its analogues, dibutyryl-cyclic AMP and 8-thiomethyl-cyclic AMP, failed to activate tryptophan hydroxylase. The activation of tryptophan hydroxylase by calcium/calmodulin-phosphorylating conditions was not modified by cyclic AMP. Endogenous protein kinase A phosphorylated a large number of proteins and tryptophan hydroxylase could be identified as one substrate by sucrose gradient centrifugation, immunoprecipitation, and immunoblotting. These results indicate that tryptophan hydroxylase is phosphorylated by protein kinase A in brain and question whether this protein kinase exerts direct regulatory influence over tryptophan hydroxylase activity via phosphorylation.  相似文献   

18.
Abstract: Partially purified preparations of GABAa/benzodiazepine receptor from rat brain were found to contain high levels of a protein kinase activity that phosphorylated a small number of proteins in the receptor preparations, including a 50-kilodalton (kD) phosphoprotein that comigrated on two-dimensional electrophoresis with purified, immunolabeled, and photolabeled receptor α subunit. Further evidence that the comigrating 50-kD phosphoprotein was, in fact, the receptor α subunit was obtained by peptide mapping analysis: the 50-kD phosphoprotein yielded one-dimensional peptide maps identical to those obtained from iodinated, purified α subunit. Phosphoamino acid analysis revealed that the receptor α subunit is phosphorylated on serine residues by the protein kinase activity present in receptor preparations. Preliminary characterization of the receptor-associated protein kinase activity suggested that it may be a second messenger-independent protein kinase. Protein kinase activity was unaltered by cyclic AMP, cyclic GMP, calcium plus calmodulin, calcium plus phosphatidylserine, and various inhibitors of these protein kinases. Examination of the substrate specificity of the receptor-associated protein kinase indicated that the enzyme preferred basic proteins as substrates. Endogenous phosphorylation experiments indicated that the receptor α subunit may also be phosphorylated in crude membranes by a protein kinase activity present in those membranes. As with phosphorylation of the receptor in purified preparations, its phosphorylation in crude membranes also appeared to be unaffected by activators and inhibitors of second messenger-dependent protein kinases. These findings raise the possibility that the phosphorylation of the α subunit of the GABAa/ benzodiazepine receptor by a receptor-associated protein kinase plays a role in modulating the physiological activity of the receptor in vivo.  相似文献   

19.
Using antiphosphotyrosine antibodies, we have investigated protein phosphorylation in mouse brain during development in intact animals and in reaggregated cerebral cultures. Under basal conditions, in vivo and in vitro, the levels of two main phosphoproteins, of Mr 120,000 and 180,000 (pp180), increased with development, reaching a maximum in the early postnatal period and decreasing thereafter. In adult forebrain, pp180 was still highly phosphorylated, but it was not detected in cerebellum or in peripheral tissues. In reaggregated cortical cultures, epidermal growth factor (EGF), type I insulin-like growth factor (IGF-I), and insulin enhanced protein tyrosine phosphorylation of several proteins, which were specific for EGF or IGF-I/insulin. In highly enriched neuronal or astrocytic monolayer cultures, some proteins phosphorylated in basal conditions, or in response to EGF and IGF-I, were found in both types of culture, whereas others appeared cell type specific. In addition, in each cell type, some proteins were phosphorylated under the action of both growth factors. These results indicate that tyrosine protein phosphorylation is maximal in mouse brain during development and is regulated by growth factors in neurons as well as in astrocytes.  相似文献   

20.
M C Emerick  W S Agnew 《Biochemistry》1989,28(21):8367-8380
The voltage-sensitive sodium channel from the electroplax of Electrophorus electricus is selectively phosphorylated by the catalytic subunit of cyclic-AMP-dependent protein kinase (protein kinase A) but not by protein kinase C. Under identical limiting conditions, the protein was phosphorylated 20% as rapidly as the synthetic model substrate kemptamide. A maximum of 1.7 +/- 0.6 equiv of phosphate is incorporated per mole. Phosphoamino acid analysis revealed labeled phosphoserine and phosphothreonine at a constant ratio of 3.3:1. Seven distinct phosphopeptides were identified among tryptic fragments prepared from radiolabeled, affinity-purified protein and resolved by HPLC. The three most rapidly labeled fragments were further purified and sequenced. Four phosphorylated amino acids were identified deriving from three consensus phosphorylation sites. These were serine 6, serine 7, and threonine 17 from the amino terminus and a residue within 47 amino acids of the carboxyl terminus, apparently serine 1776. The alpha-subunits of brain sodium channels, like the electroplax protein, are readily phosphorylated by protein kinase A. However, these are also phosphorylated by protein kinase C and exhibit a markedly different pattern of incorporation. Each of three brain alpha-subunits displays an approximately 200 amino acid segment between homologous repeat domains I and II, which is missing from the electroplax and skeletal muscle proteins [Noda et al. (1986) Nature (London) 320, 188; Kayano et al. (1988) FEBS Lett. 228, 1878; Trimmer et al. (1989) Neuron 3, 33]. Most of the phosphorylation of the brain proteins occurs on a cluster of consensus phosphorylation sites located in this segment. This contrasts with the pattern of highly active sites on the amino and carboxyl termini of the electroplax protein. The detection of seven labeled tryptic phosphopeptides compared to the maximal labeling stoichiometry of approximately 2 suggests that many of the acceptor sites on the protein may be blocked by endogenous phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号