首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change.  相似文献   

8.
9.
10.
The sequential binding of different tetratricopeptide repeat (TPR) proteins to heat shock protein 90 (hsp90) is essential to its chaperone function in vivo. We have previously shown that three basic residues in the TPR domain of PP5 are required for binding to the acidic C-terminal domain of hsp90. We have now tested which acidic residues in this C-terminal domain are required for binding to three different TPR proteins as follows: PP5, FKBP52, and Hop. Mutation of Glu-729, Glu-730, and Asp-732 at the C terminus of hsp90 interfered with binding of all three TPR proteins. Mutation of Glu-720, Asp-722, Asp-723, and Asp-724 inhibited binding of FKBP52 and PP5 but not of Hop. Mutation of Glu-651 and Asp-653 did not affect binding of FKBP52 or PP5 but inhibited both Hop binding and hsp90 chaperone activity. We also found that a conserved Lys residue required for PP5 binding to hsp90 was critical for the binding of FKBP52 but not for the binding of Hop to hsp90. These results suggest distinct but overlapping binding sites on hsp90 for different TPR proteins and indicate that the binding site for Hop, which is associated with hsp90 in intermediate stages of protein folding, overlaps with a site of chaperone activity.  相似文献   

11.
The sequential binding of heat shock protein 90 (hsp90) to a series of tetratricopeptide repeat (TPR) proteins is critical to its function as a molecular chaperone. We have used site-directed mutagenesis to clarify the structural basis for the binding of hsp90 to the TPR domain of phosphoprotein phosphatase 5 (PP5). This TPR domain was chosen for study because its three-dimensional structure is known. We examined co-immunoprecipitation of hsp90 with wild type and mutant TPR constructs from transfected cells. Only mutations located on one face of the TPR domain affected hsp90 binding. This allowed the identification of a binding groove. Three basic residues that are highly conserved in hsp90-binding TPR proteins extend prominently into this groove. Lys-97 and Arg-101 were absolutely required for hsp90 binding, while mutation of Arg-74 diminished, but did not abrogate, hsp90 binding. Mutation of Lys-32, another conserved basic residue in the binding groove, also blocked hsp90 binding. The TPR domain of PP5 bound specifically to a 12-kDa C-terminal fragment of hsp90. This binding was reduced by mutation of acidic residues in the hsp90 fragment. These data suggest conservation, among hsp90-binding TPR proteins, of a binding groove containing basic residues that interact with acidic residues near the C terminus of hsp90.  相似文献   

12.
13.
The ability of the small Hsp (heat-shock protein) Lo18 from Oenococcus oeni to modulate the membrane fluidity of liposomes or to reduce the thermal aggregation of proteins was studied as a function of the pH in the range 5-9. We have determined by size-exclusion chromatography and analytical ultracentrifugation that Lo18 assembles essentially as a 16-mer at acidic pH. Its quaternary structure evolves to a mixture of lower molecular mass oligomers probably in dynamic equilibrium when the pH increases. The best Lo18 activities are observed at pH 7 when the particle distribution contains a major proportion of dodecamers. At basic pH, particles corresponding to a dimer prevail and are thought to be the building blocks leading to oligomerization of Lo18. At acidic pH, the dimers are organized in a double-ring of stacked octamers to form the 16-mer as shown by the low-resolution structure determined by electron microscopy. Experiments performed with a modified protein (A123S) shown to preferentially form dimers confirm these results. The α-crystallin domain of Methanococcus jannaschii Hsp16.5, taken as a model of the Lo18 counterpart, fits with the electron microscopy envelope of Lo18.  相似文献   

14.
15.
FKBP52 is a steroid receptor-associated immunophilin that binds via a tetratricopeptide repeat (TPR) domain to hsp90. FKBP52 has also been shown to interact either directly or indirectly via its peptidylprolyl isomerase (PPIase) domain with cytoplasmic dynein, a motor protein involved in retrograde transport of vesicles toward the nucleus. The functional role for the PPIase domain in receptor movement was demonstrated by showing that expression of the PPIase domain fragment of FKBP52 in 3T3 cells inhibits dexamethasone-dependent nuclear translocation of a green fluorescent protein-glucocorticoid receptor chimera. Here, we show that cytoplasmic dynein is co-immunoadsorbed with two other TPR domain proteins that bind hsp90 (the cyclophilin CyP-40 and the protein phosphatase PP5). Both proteins possess PPIase homology domains, and co-immunoadsorption of cytoplasmic dynein with each is blocked by the PPIase domain fragment of FKBP52. Using purified proteins, we show that FKBP52, PP5, and the PPIase domain fragment bind directly to the intermediate chain of cytoplasmic dynein. PP5 colocalizes with both cytoplasmic dynein and microtubules, and expression of the PPIase domain fragment of FKBP52 in 3T3 cells disrupts its cytoskeletal localization. We conclude that the PPIase domains of the hsp90-binding immunophilins interact directly with cytoplasmic dynein and that this interaction with the motor protein is responsible for the microtubular localization of PP5 in vivo.  相似文献   

16.
Here we show a novel mechanism by which FLICE-like inhibitory protein (c-FLIP) regulates apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and one of its receptors, DR5. c-FLIP is a critical regulator of the TNF family of cytokine receptor signaling. c-FLIP has been postulated to prevent formation of the competent death-inducing signaling complex (DISC) in a ligand-dependent manner, through its interaction with FADD and/or caspase-8. In order to identify regulators of TRAIL function, we used the intracellular death domain (DD) of DR5 as a target to screen a phage-displayed combinatorial peptide library. The DD of DR5 selected from the library a peptide that showed sequence similarity to a stretch of amino acids in the C terminus of c-FLIP(L). The phage-displayed peptide selectively interacted with the DD of DR5 in in vitro binding assays. Similarly, full-length c-FLIP (c-FLIP(L)) and the C-terminal p12 domain of c-FLIP interacted with DR5 both in in vitro pull-down assays and in mammalian cells. This interaction was independent of TRAIL. To the contrary, TRAIL treatment released c-FLIP(L) from DR5, permitting the recruitment of FADD to the active DR5 signaling complex. By employing FADD-deficient Jurkat cells, we demonstrate that DR5 and c-FLIP(L) interact in a FADD-independent manner. Moreover, we show that a cellular membrane permeable version of the peptide corresponding to the DR5 binding domain of c-FLIP induces apoptosis in mammalian cells. Taken together, these findings indicate that c-FLIP interacts with the DD of DR5, thus preventing death (L)signaling by DR5 prior to the formation of an active DISC. Because TRAIL and DR5 are ubiquitously expressed, the interaction of c-FLIP(L) and DR5 indicates a mechanism by which tumor selective apoptosis can be achieved through protecting normal cells from undergoing death receptor-induced apoptosis.  相似文献   

17.
Androgen receptor (AR) that mediates androgen action is a crucial factor in male reproductive functions. Here, we report a novel AR corepressor ARR19 (androgen receptor corepressor-19 kDa), which has been isolated as a putative androgen-induced gene from murine testis. ARR19 encoding a leucine-rich protein is expressed only in male reproductive organs such as testis and prostate. ARR19 expression in the testis is developmentally regulated. Functional analysis conducted by the transient transfection of mammalian cells shows that ARR19 represses AR transactivation in a dose-dependent manner. Furthermore, yeast two-hybrid and glutathione S-transferase pull-down analyses reveal that ARR19 directly associates with AR through the N-terminal and leucine zipper-containing regions of ARR19 and the DNA binding-hinge domain of AR. Interestingly, ARR19 localized in the cytoplasmic compartment cotranslocates into the nucleus with AR upon androgen exposure. The ARR19 repression of AR transactivation is through the recruitment of histone deacetylase 4 (HDAC4) by ARR19. Overexpression of HDAC4 further inhibits the ARR19-repressed AR transactivation. In addition, ARR19 directly interacts with HDAC4 in vitro. Furthermore, DNA-protein complex immunoprecipitation assays reveal that HDAC4 is recruited to an androgen-regulated promoter through ARR19. Taken together, the results suggest that ARR19 may act as an AR corepressor in vivo and play an important role in male reproductive functions.  相似文献   

18.
Morales JL  Perdew GH 《Biochemistry》2007,46(2):610-621
The regulation of the aryl hydrocarbon receptor (AhR) protein levels has been an area of keen interest, given its important role in mediating the cellular adaptation and toxic response to several environmental pollutants. The carboxyl terminus of hsc70-interacting protein (CHIP) ubiquitin ligase was previously associated with the regulation of the aryl hydrocarbon receptor, although the mechanisms were not directly demonstrated. In this study, we established that CHIP could associate with the AhR at cellular levels of these two proteins, suggesting a potential role for CHIP in the regulation of the AhR complex. The analysis of the sucrose-gradient-fractionated in vitro translated AhR complexes revealed that CHIP can mediate hsp90 ubiquitination while cooperating with unidentified factors to promote the ubiquitination of mature unliganded AhR complexes. In addition, the immunophilin-like protein XAP2 was able to partially protect the AhR from CHIP-mediated ubiquitination in vitro. This protection required the direct interaction of the XAP2 with the AhR complex. Surprisingly, CHIP silencing in Hepa-1c1c7 cells by siRNA methods did not reveal the function of CHIP in the AhR complex, because it did not affect well-characterized activities of the AhR nor affect its steady-state protein levels. However, the presence of potential compensatory mechanisms may be confounding this particular observation. Our results suggest a model where the E3 ubiquitin ligase CHIP cooperates with other ubiquitination factors to remodel native AhR-hsp90 complexes and where co-chaperones such as the XAP2 may affect the ability of CHIP to target AhR complexes for ubiquitination.  相似文献   

19.
Many plant pentatricopeptide repeat (PPR) proteins are known to contain a highly conserved C-terminal DYW domain whose function is unknown. Recently, the DYW domain has been proposed to play a role in RNA editing in plant organelles. To address this possibility, we prepared recombinant DYW proteins and tested their cytidine deaminase activity. However, we could not detect any activity in the assays we used. Instead, we found that the recombinant DYW domains possessed endoribonuclease activity and cleaved before adenosine residues in the RNA molecule. Some DYW-containing PPR proteins may catalyze site-specific cleavage of target RNA species.  相似文献   

20.
To better understand the assembly mechanism for the progesterone receptor (PR), we have developed cell-free systems for studying interactions of PR, hsp90, and other associated proteins. When PR is incubated in rabbit reticulocyte lysate, its association with hsp90, hsp70, the three immunophilins FKBP54, FKBP52 and CyP-40, and with p23 is observed. These interactions require ATP/Mg2+ and when ATP is limiting the PR complex is altered to one containing the proteins p60 and p48, but lacking immunophilins and p23. We have studied two pre-formed hsp90 complexes that may participate in the assembly of PR complexes. One contains hsp90 bound to hsp70 and p60 and this complex forms spontaneously in the absence of ATP. A second complex contains hsp90 bound to p23 plus the three immunophilins and some hsp70. The formation of this complex requires ATP. In further studies we have shown that purified hsp90 can bind to purified p23 and this interaction requires both ATP and molybdate. This explains, in part, the known effects of ATP and molybdate on assembly of PR complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号