首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have investigated the effects of destruction of the geniculo-hypothalamic tract (GHT) on the circadian system of golden hamsters. In the first experiment, intact hamsters were housed in constant darkness, and phase shifts in running-wheel activity rhythms were assessed following 15-min light pulses administered at circadian time (CT) 12 (defined as the beginning of activity), CT 14, CT 18, and CT 20. Responses to light pulses at the same CTs were then reassessed after GHT lesions. Hamsters with complete lesions showed decreases in phase advances caused by light pulses at CT 18 and CT 20. Phase delays elicited by light at CT 12 and CT 14 were not altered. In a second study, intact and GHT-ablated hamsters housed in constant light received 6-hr dark pulses at various CTs. Hamsters with complete GHT ablation showed smaller advances than controls to dark pulses centered on CT 8-10. After 110 days in constant light, 7 of 10 intact hamsters showed splitting of their activity rhythms into two components, while only 1 of the 8 similarly treated ablated hamsters displayed dissociated activity components. Ablated hamsters had significantly shorter free-running periods during the first 35 days of exposure to constant light than did the intact hamsters. These results demonstrate that destruction of the GHT in the hamster alters phase shifting in response to periods of light or dark, and they indicate a role for the GHT in mediating several photic effects on the circadian system.  相似文献   

2.
The golden hamster (Mesocricetus auratus) is one of the most frequently used laboratory animals, particularly in chronobiological studies. One reason is its very robust and predictable rhythms, although the question arises whether this is an inbreeding effect or rather is typical for the species. We compared the daily (circadian) activity rhythms of wild and laboratory golden hamsters. The laboratory hamsters were derived from our own outbred stock (Zoh:GOHA). The wild hamsters included animals captured in Syria and their descendants (F1). Experiments were performed under entrained (light: dark [LD] 14h:10h) and under free-running (constant darkness, DD) conditions. Locomotor activity was recorded using passive infrared detectors. Under entrained conditions, the animals had access to a running wheel for a certain time to induce additional activity. After 3 weeks in constant darkness, a light pulse (15 min, 100 lux) was applied at circadian time 14 (CT14). Both laboratory and wild hamsters showed well-pronounced and very similar activity rhythms. Under entrained conditions, all hamsters manifested about 80% of their total 24h activity during the dark portion of the LD cycle. The robustness of the daily rhythms was also similar. However, interindividual variability was higher in wild hamsters for both measures. All animals used the running wheels almost exclusively during the dark portion of the LD cycle, although the wild hamsters were three times more active. The period length, measured in constant darkness, was significantly shorter in wild (23.93h ± 0.10h) than in laboratory hamsters (24.06 ± 0.07h). The light-induced phase changes were not different (about 1.5h). In summary, these results indicate that the laboratory hamster is not much different from the wild type. (Chronobiology International, 18(6), 921932, 2001)  相似文献   

3.
To investigate the role of non-parametric light effects in entrainment, Djungarian hamsters of two different circadian phenotypes were exposed to skeleton photoperiods, or to light pulses at different circadian times, to compile phase response curves (PRCs). Wild-type (WT) hamsters show daily rhythms of locomotor activity in accord with the ambient light/dark conditions, with activity onset and offset strongly coupled to light-off and light-on, respectively. Hamsters of the delayed activity onset (DAO) phenotype, in contrast, progressively delay their activity onset, whereas activity offset remains coupled to light-on. The present study was performed to better understand the underlying mechanisms of this phenomenon. Hamsters of DAO and WT phenotypes were kept first under standard housing conditions with a 14:10 h light–dark cycle, and then exposed to skeleton photoperiods (one or two 15-min light pulses of 100 lx at the times of the former light–dark and/or dark–light transitions). In a second experiment, hamsters of both phenotypes were transferred to constant darkness and allowed to free-run until the lengths of the active (α) and resting (ρ) periods were equal (α:ρ = 1). At this point, animals were then exposed to light pulses (100 lx, 15 min) at different circadian times (CTs). Phase and period changes were estimated separately for activity onset and offset. When exposed to skeleton-photoperiods with one or two light pulses, the daily activity patterns of DAO and WT hamsters were similar to those obtained under conditions of a complete 14:10 h light–dark cycle. However, in the case of giving only one light pulse at the time of the former light–dark transition, animals temporarily free-ran until activity offset coincided with the light pulse. These results show that photic entrainment of the circadian activity rhythm is attained primarily via non-parametric mechanisms, with the “morning” light pulse being the essential cue. In the second experiment, typical photic PRCs were obtained with phase delays in the first half of the subjective night, phase advances in the second half, and a dead zone during the subjective day. ANOVA indicated no significant differences between WT and DAO animals despite a significantly longer free-running period (tau) in DAO hamsters. Considering the phase shifts induced around CT0 and the different period lengths, it was possible to model the entrainment patterns of both phenotypes. It was shown that light-induced phase shifts of activity offset were sufficient to compensate for the long tau in WT and DAO hamsters, thus enabling a stable entrainment of their activity offsets to be achieved. With respect to activity onsets, phase shifts were sufficient only in WT animals; in DAO hamsters, activity onset showed increasing delays. The results of the present paper clearly demonstrate that, under laboratory conditions, the non-parametric component of light and dark leads to circadian entrainment in Djungarian hamsters. However, a stable entrainment of activity onset can be achieved only if the free-running period does not exceed a certain value. With longer tau values, hamsters reveal a DAO phenotype. Under field conditions, therefore, non-photic cues/zeitgebers must obviously be involved to enable a proper circadian entrainment.  相似文献   

4.
Running wheels are widely used in studies on biological rhythms. In mice wheel diameters have ranged from 11 cm to 23 cm. We provided mice with running wheels of two different sizes: 15 cm diameter and 11 cm diameter. The amount of running in the 12-h light:12-h dark condition and the endogenous period of wheel running in constant darkness was determined over 40 days. On the 1st day in constant darkness all animals were exposed to a 15-min light pulse at circadian time 13. The animals in the small wheel ran significantly less both in 12 h light: 12 h dark and constant darkness, and showed a longer endogenous period in constant darkness compared to animals in the large wheel. Moreover, after the light pulse at circadian time 13, mice in the small wheel showed a significantly smaller phase delay in running wheel activity than mice in the larger wheels. The data suggest that the magnitude of a photic phase shift depends on the amount and timing of activity the animals display in relation to this stimulus. It can be concluded that technical features of the running wheel can influence the circadian period of wheel running.  相似文献   

5.
Circadian rhythms are highly important not only for the synchronization of animals and humans with their periodic environment but also for their fitness. Accordingly, the disruption of the circadian system may have adverse consequences. A certain number of animals in our breeding stock of Djungarian hamsters are episodically active throughout the day. Also body temperature and melatonin lack 24-h rhythms. Obviously in these animals, the suprachiasmatic nuclei (SCN) as the central pacemaker do not generate a circadian signal. Moreover, these so-called arrhythmic (AR) hamsters have cognitive deficits. Since motor activity is believed to stabilize circadian rhythms, we investigated the effect of voluntary wheel running. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14 L/10 D lighting regimen. AR animals were selected according to their activity pattern obtained by means of passive infrared motion detectors. In a first step, the daily activity behavior was investigated for 3 weeks each without and with running wheels. To estimate putative photic masking effects, hamsters were exposed to light (LPs) and DPs and also released into constant darkness for a minimum of 3 weeks. A novel object recognition (NOR) test was performed to evaluate cognitive abilities both before and after 3 weeks of wheel availability. The activity patterns of hamsters with low wheel activity were still AR. With more intense running, daily patterns with higher values in the dark time were obtained. Obviously, this was due to masking as LPs did suppress and DPs induced motor activity. When transferred to constant darkness, in some animals the daily rhythm disappeared. In other hamsters, namely those which used the wheels most actively, the rhythm was preserved and free-ran, what can be taken as indication of a reconstitution of circadian rhythmicity. Also, animals showing a 24-h activity pattern after 3 weeks of extensive wheel running were able to recognize the novel object in the NOR test but not so before. The results show that voluntary exercise may reestablish circadian rhythmicity and improve cognitive performance.  相似文献   

6.
Summary Hamsters maintained under constant illumination were exposed to 2- or 6-h pulses of darkness at various phases of their circadian activity rhythms. When presented around the time of activity onset, the pulses resulted in phase advances, and when presented toward the end of daily activity, they resulted in phase delays. Since others have shown that light pulses presented at the same phases in constant darkness cause phase shifts in the opposite directions, these results indicate that phase response curves for light and dark pulses are mirror images.Dark pulses also caused phase-dependent changes, both transient and long-lasting, in the period of the free-running rhythms, and a few pulses were immediately followed by splitting of the activity rhythms into two components. Such effects may reflect a differential responsiveness of two coupled oscillators to dark pulses.Abbreviations CT circadian time - DD constant dark - LD lightdark - LL constant light - PRC phase response curve - SD subjective day - SN subjective night - period of a circadian rhythm Supported by grants from the NSERC of Canada to B. Rusak and to G.V. Goddard. We are grateful to Dr. Goddard for his support and encouragement  相似文献   

7.
The golden hamster (Mesocricetus auratus) is one of the most frequently used laboratory animals, particularly in chronobiological studies. One reason is its very robust and predictable rhythms, although the question arises whether this is an inbreeding effect or rather is typical for the species. We compared the daily (circadian) activity rhythms of wild and laboratory golden hamsters. The laboratory hamsters were derived from our own outbred stock (Zoh:GOHA). The wild hamsters included animals captured in Syria and their descendants (F1). Experiments were performed under entrained (light: dark [LD] 14h:10h) and under free-running (constant darkness, DD) conditions. Locomotor activity was recorded using passive infrared detectors. Under entrained conditions, the animals had access to a running wheel for a certain time to induce additional activity. After 3 weeks in constant darkness, a light pulse (15 min, 100 lux) was applied at circadian time 14 (CT14). Both laboratory and wild hamsters showed well-pronounced and very similar activity rhythms. Under entrained conditions, all hamsters manifested about 80% of their total 24h activity during the dark portion of the LD cycle. The robustness of the daily rhythms was also similar. However, interindividual variability was higher in wild hamsters for both measures. All animals used the running wheels almost exclusively during the dark portion of the LD cycle, although the wild hamsters were three times more active. The period length, measured in constant darkness, was significantly shorter in wild (23.93h ± 0.10h) than in laboratory hamsters (24.06 ± 0.07h). The light-induced phase changes were not different (about 1.5h). In summary, these results indicate that the laboratory hamster is not much different from the wild type. (Chronobiology International, 18(6), 921-932, 2001)  相似文献   

8.
Circadian rhythms of animals are reset by exposure to light as well as dark; however, although the parameters of photic entrainment are well characterized, the phase-shifting actions of dark pulses are poorly understood. Here, we determined the tonic and phasic effects of short (0.25 h), moderate (3 h), and long (6-9 h) duration dark pulses on the wheel-running rhythms of hamsters in constant light. Moderate- and long-duration dark pulses phase dependently reset behavioral rhythms, and the magnitude of these phase shifts increased as a function of the duration of the dark pulse. In contrast, the 0.25-h dark pulses failed to evoke consistent effects at any circadian phase tested. Interestingly, moderate- and long-dark pulses elevated locomotor activity (wheel-running) on the day of treatment. This induced wheel-running was highly correlated with phase shift magnitude when the pulse was given during the subjective day. This, together with the finding that animals pulsed during the subjective day are behaviorally active throughout the pulse, suggests that both locomotor activity and behavioral activation play an important role in the phase-resetting actions of dark pulses. We also found that the robustness of the wheel-running rhythm was weakened, and the amount of wheel-running decreased on the days after exposure to dark pulses; these effects were dependent on pulse duration. In summary, similarly to light, the resetting actions of dark pulses are dependent on both circadian phase and stimulus duration. However, dark pulses appear more complex stimuli, with both photic and nonphotic resetting properties.  相似文献   

9.
Summary Bouts of induced wheel-running, 3 h long, accelerate the rate of re-entrainment of hamsters' activity rhythms to light-dark (LD) cycles that have been phase-advanced by 8 h (Mrosovsky and Salmon 1987). The bouts of running are given early in the first night of the new LD cycle, and by the second night the phase advance in activity onset already averages 7 h. Such large shifts contrast with the mean phase advance of <1 h at the peak of the phase response curve when hamsters in constant darkness (DD) experience 2-h pulses of induced activity (Reebs and Mrosovsky 1989). The present paper investigates pulse duration and light as possible causes for the discrepancy in shift amplitude between these two studies. In a first experiment, pulses of induced wheel-running 1 h, 3 h, or 5 h long were given at circadian times (CT) 6 and 22-2 to hamsters free-running in DD. Pulses given at CT 6 caused phase-advances of up to 2.8 h, whereas pulses at CT 22-2 resulted in delays of up to 1.0 h. Shifts after 3-h and 5-h pulses did not differ, but were larger than after 1-h pulses, and larger than after the 2-h pulses given in DD by Reebs and Mrosovsky (1989). Thus 3 h appears to be the minimum pulse duration necessary to obtain maximum phase-shifting effects. In a second experiment, the re-entrainment design of Mrosovsky and Salmon (1987) was repeated with the light portion of the shifted LD cycle eliminated. Hamsters exercised for 3 h phase-advanced 2.9 h on average (excluding 2 animals who ran poorly). When the same hamsters were exposed 7 days later to a 14-h light pulse starting 5 h after their activity onset, they advanced by an average of 3.3 h. Adding the average values for activity-induced shifts and light-induced shifts gives a total of about 6 h. Possible synergism between the effects of induced activity and those of light may account for the remaining small difference between this total and the 7-h advances previously reported.Abbreviations CT circadian time - DD constant darkness - LD light-dark - PRC phase response curve - free-running period of rhythm  相似文献   

10.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

11.
Aging involves many alterations in circadian rhythms, including a loss of sensitivity to both photic and nonphotic time signals. This study investigated the sensitivity of young and old hamsters to the phase advancing effect of a 6-h dark pulse on the locomotor activity rhythm. Each hamster was tested four times during a period of approximately 9 mo; periods of exposure to a 14-h photoperiod were alternated with the periods of exposure to constant light (20-80 lx), during which the dark pulses were administered. There was no significant difference in the phase shifts exhibited by the young (4-10 mo) and old hamsters (19-25 mo) or in the amount of wheel running activity displayed during each dark pulse. However, young hamsters had a significantly greater propensity to exhibit split rhythms immediately after the dark pulses. These results suggest that, although aging does not reduce the sensitivity of the circadian pacemaker to this nonphotic signal, it alters one property of the pacemaker, i.e., the flexibility of the coupling of its component oscillators.  相似文献   

12.
Summary Djungarian hamsters (Phodopus sungorus sungorus) depend mainly on day length to cue seasonal adjustments. However, not all individuals respond to short day conditions. A previous study from this laboratory proposed that nonresponsiveness to short day conditions rests with a defect in the circadian organization of these hamsters.In this study we found pronounced differences between responsive and nonresponsive hamsters in the expression of circadian rhythmicity under constant darkness and under constant illumination. While responsive hamsters showed a free-running activity pattern with a period of 23.86+0.04 h and responded to brief light pulses with the expected phase delays and phase advances, nonresponsive hamsters exhibited a period of 24.04+0.05 h and responded to light pulses with phase advances. Furthermore, 9 out of 15 responsive hamsters showed a clear split in the activity pattern within 8 weeks under constant light (80–100 lux), while only 1 of the 7 nonresponsive hamsters exhibited a split activity pattern. As a result of these differences in circadian function, nonresponsive Djungarian hamsters are incapable of proper photoperiod time measurement and photoperiod-induced seasonality.Abbreviations PRC phase response curve - ct circadian time - DD constant dark - LL constant light  相似文献   

13.
Circadian (~24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel‐running behavior of EphA4 knockout (EphA4?/?) mice under different light conditions and upon photic resetting, as well as their light‐induced protein response in the SCN. EphA4?/? mice exhibited reduced wheel‐running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4?/? mice exhibited suppressed phase delays of their wheel‐running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light‐induced c‐FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.  相似文献   

14.
Summary The ability of social stimuli to act as entraining agents of circadian rhythms was investigated in golden hamsters (Mesocricetus auratus). In a first experiment, pairs of male hamsters (one of them enucleated and the other intact) were maintained under a light-dark (LD) cycle with a period of 23.3 h. Running-wheel activity was recorded to determine the effect of social interaction on the free-running circadian rhythm of activity. In several pairs, general activity and body temperature were also recorded. In all pairs the intact animals entrained to the LD cycle, whereas the activity rhythms of the enucleated animals free-ran with periods of approximately 24 h and showed no apparent sign of synchronization or relative coordination with the other member of the pair. In a second experiment, male hamsters maintained in constant darkness received pulses of social interaction, which have been reported to induce phase shifts of the activity rhythm. Consistent phase shifts in the running-wheel activity rhythm were not induced by the social pulses in our experiment. These results suggest strongly that social stimuli are not effective entraining agents of circadian rhythms in the golden hamster.Abbreviations CT circadian time - LD light-dark  相似文献   

15.
Circadian rhythms can be reset by both photic and non-photic stimuli. Recent studies have used long light exposure to produce photic phase shifts or to enhance non-photic phase shifts. The presence or absence of light can also influence the expression of locomotor rhythms through masking; light during the night attenuates locomotor activity, while darkness during the day induces locomotor activity in nocturnal animals. Given this dual role of light, the current study was designed to examine the relative contributions of photic and non-photic components present in a long light pulse paradigm. Mice entrained to a light/dark cycle were exposed to light pulses of various durations (0, 3, 6, 9, or 12 h) starting at the time of lights-off. After the light exposure, animals were placed in DD and were either left undisturbed in their home cages or had their wheels locked for the remainder of the subjective night and subsequent subjective day. Light treatments of 6, 9, and 12 h produced large phase delays. These treatments were associated with decreased activity during the nocturnal light and increased activity during the initial hours of darkness following light exposure. When the wheels were locked to prevent high-amplitude activity, the resulting phase delays to the light were significantly attenuated, suggesting that the activity following the light exposure may have contributed to the overall phase shift. In a second experiment, telemetry probes were used to assess what effect permanently locking the wheels had on the phase shift to the long light pulses. These animals had phase shifts fully as large as animals without any form of wheel lock, suggesting that while non-photic events can modulate photic phase shifts, they do not play a role in the full phase-shift response observed in animals exposed to long light pulses. This paradigm will facilitate investigations into non-photic responses of the mouse circadian system.  相似文献   

16.
Light exposure during the early and late subjective night generally phase delays and advances circadian rhythms, respectively. However, this generality was recently questioned in a photic entrainment study in Octodon degus. Because degus can invert their activity phase preference from diurnal to nocturnal as a function of activity level, assessment of phase preference is critical for computations of phase reference [circadian time (CT) 0] toward the development of a photic phase response curve. After determining activity phase preference in a 24-h light-dark cycle (LD 12:12), degus were released in constant darkness. In this study, diurnal (n = 5) and nocturnal (n = 7) degus were randomly subjected to 1-h light pulses (30-35 lx) at many circadian phases (CT 1-6: n = 7; CT 7-12: n = 8; CT 13-18: n = 8; and CT 19-24: n = 7). The circadian phase of body temperature (Tb) onset was defined as CT 12 in nocturnal animals. In diurnal animals, CT 0 was determined as Tb onset + 1 h. Light phase delayed and advanced circadian rhythms when delivered during the early (CT 13-16) and late (CT 20-23) subjective night, respectively. No significant phase shifts were observed during the middle of the subjective day (CT 3-10). Thus, regardless of activity phase preference, photic entrainment of the circadian pacemaker in Octodon degus is similar to most other diurnal and nocturnal species, suggesting that entrainment mechanisms do not determine overt diurnal and nocturnal behavior.  相似文献   

17.
The split circadian activity rhythm that emerges in hamsters after prolonged exposure to constant light has been a theoretical cornerstone of a multioscillator view of the mammalian circadian pacemaker. The present study demonstrates a novel method for splitting hamster circadian rhythms and entraining them to exotic light:dark cycles. Male Syrian hamsters previously maintained on a 14-h day and 10-h night were exposed to a second 5-h dark phase in the afternoon. The 10-h night was progressively shortened until animals experienced two 5-h dark phases beginning 10 h apart. Most hamsters responded by splitting their activity rhythms into two components associated with the afternoon and nighttime dark phases, respectively. Each activity component was entrained to this light:dark:light:dark cycle. Transfer of split hamsters to constant darkness resulted in rapid joining of the two activity components with the afternoon component associated with onset of the fused rhythm. In constant light, the nighttime component corresponded to activity onset of the fused rhythm, but splitting emerged again at an interval characteristic for this species. The results place constraints on multi-oscillator models of circadian rhythms and offer opportunities to characterize the properties of constituent circadian oscillators and their interactions.  相似文献   

18.
Circadian rhythms in mammals are generated by an endogenous pacemaker but are modulated by environmental cycles, principally the alternation of light and darkness. Although much is known about nonparametric effects of light on the circadian system, little is known about other effects of photic stimulation. In the present study, which consists of a series of five experiments in mice, various manipulations of photic stimulation were used to dissect the mechanisms responsible for a variation in the magnitude of light-induced phase-shifts that results from prolonged exposure to darkness. The results confirmed previous observations that prolonged exposure to darkness causes an increase in the magnitude of phase shifts (both phase advances and phase delays) evoked by discrete light pulses. The results also indicated that the increase in responsiveness results from the lack of exposure to light per se and not from collateral effects of exposure to constant darkness such as the lack of previous entrainment. The lack of exposure to light causes the circadian system to undergo a process of dark adaptation similar to dark adaptation in the visual system but with a much slower temporal course. The results suggest that circadian dark adaptation may take place at the retinal level, but it is not clear whether it involves a change in the sensitivity or maximal responsiveness of the system.  相似文献   

19.
Circadian rhythms in mammals are generated by an endogenous pacemaker but are modulated by environmental cycles, principally the alternation of light and darkness. Although much is known about nonparametric effects of light on the circadian system, little is known about other effects of photic stimulation. In the present study, which consists of a series of five experiments in mice, various manipulations of photic stimulation were used to dissect the mechanisms responsible for a variation in the magnitude of light-induced phase-shifts that results from prolonged exposure to darkness. The results confirmed previous observations that prolonged exposure to darkness causes an increase in the magnitude of phase shifts (both phase advances and phase delays) evoked by discrete light pulses. The results also indicated that the increase in responsiveness results from the lack of exposure to light per se and not from collateral effects of exposure to constant darkness such as the lack of previous entrainment. The lack of exposure to light causes the circadian system to undergo a process of dark adaptation similar to dark adaptation in the visual system but with a much slower temporal course. The results suggest that circadian dark adaptation may take place at the retinal level, but it is not clear whether it involves a change in the sensitivity or maximal responsiveness of the system.  相似文献   

20.
Circadian regulation of pineal melatonin content was studied in Syrian hamsters (Mesocricetus auratus), especially melatonin peak width and the temporal correlation to wheel-running activity. Melatonin was measured by radioimmunoassay in glands removed at different circadian times with respect to activity onset (= CT 12). Pineal melatonin peak width (h; for mean 125 pg/gland) and activity duration () were both 4–5 h longer after 12 or 27 weeks than after 5 or 6 days in continuous darkness (DD). Increased peak width was associated with a delay in the morning decline (M) of melatonin to baseline, correlated with a similar delay in wheel-running offset. In contrast, the evening rise (E) in melatonin occurred at approximately the same circadian phase regardless of the length of DD. Fifteen min light pulses produced similar phase-shifts in melatonin and activity. In a phase advance shift, M advanced at once, while E advanced only after several days of adjustment. Independent timing of shifts in the E and M components of the melatonin rhythm suggest that these events are controlled separately by at least two circadian oscillators whose mutual phase relationship determines melatonin peak width. This two-oscillator control of melatonin peak width is integral to the circadian mechanism of hamster photoperiodic time measurement.Abbreviations CT circadian time - DD continuous dark - L: D light: dark cycle - PMEL pineal melatonin - PRC phase response curve - RIA radioimmunoassay; , duration (h) of the active phase of the circadian wheel-running rhythm; , free-running period  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号