首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By linking the mercapto groups with isopropyl and introducing l-amino acid into the 5-carboxyl of DMSA a class of novel 5-(1-carbonyl-l-amino-acid)-2,2- dimethyl-[1,3]dithiolane-4-carboxylic acids were prepared. Their in vivo activities were evaluated on lead loaded mice at the dose of 0.4 mmol/kg. The results showed that the lead levels of the livers, kidneys, femurs and brains in particular could be efficiently decreased by 0.4 mmol/kg of 5-(1-carbonyl-l-amino-acid)-2,2-dimethyl-[1,3]dithiolane-4-carboxylic acids. The benefit of 5-(1-carbonyl-l-amino-acid)-2,2-dimethyl-[1,3]dithiolane-4-carboxylic acids to the detoxification of the brain lead was attributed to their transmembrane ability. Compared with the lead detoxification efficacy, they did not affect the essential metals such as Fe, Cu, Zn, and Ca of the treated mice. Silico molecular modeling predicted that 5-(1-carbonyl-l-amino-acid)-2,2-dimethyl-[1,3]dithiolane-4-carboxylic acids had no hepatotoxicity.  相似文献   

2.
We describe here a simple method for the synthesis of glycerol derivatives containing an organochalcogen unit (Se, Te and S) using NaBH4 and PEG-400 as a solvent. The new methodology was used to synthesize a range of new organochalcogen compounds in good yields. Furthermore, four of synthesized compounds were evaluated for their antioxidant activity using different assays, such as 2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, nitric oxide (NO) and hydroxyl radical (OH) scavenging, ferric ion reducing antioxidant power (FRAP), ferrous ion chelating, superoxide dismutase-like activity and inhibition of linoleic acid lipid peroxidation. The new organotellurium 2,2-dimethyl-4-(phenyltellanylmethyl)-1,3-dioxolane 3j showed antioxidant activity and was more effective in inhibition of induced lipid peroxidation compared to solketal 4. Selenium and sulfur analogs 3a and 3m and solketal 4 did not present antioxidant effect. These findings suggest that 2,2-dimethyl-4-(phenyltellanylmethyl)-1,3-dioxolane 3j is a promising antioxidant and that its activity is influenced by the presence of the tellurium atom on the structure.  相似文献   

3.
Lipase and newly synthesized gemini-type detergent were mixed in an aqueous phosphate buffer solution and lyophilized. Due to complex formation between the substances it was possible to dissolve or at least finely disperse these preparations in organic media. The lipase-detergent complexes were used to catalyse the irreversible transesterfication of 6-methyl-5-hepten-2-ol (sulcatol) or 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with vinyl or isopropenyl carboxylate in organic solvents. The complexes were considerably more active than enzyme powder or the complexes prepared with conventional synthesized detergents in organic media. © Rapid Science Ltd. 1998  相似文献   

4.
A series of 2,2-dimethyl-5-[4-(methylsulfonyl)phenyl]-4-phenyl-3(2H)furanones was prepared and evaluated for their ability to inhibit cyclo-oxygenase-2 (COX-2).  相似文献   

5.
Although both the structures and the reactions of histidine and phenylalanine ammonia lyases (HAL and PAL) are very similar, the former shows a primary kinetic deuterium (D) isotope effect, while the latter does not. In the HAL reaction, the release of ammonia is partially rate-determining and is slower than the release of the product (E)-urocanate (4), whereas in the PAL reaction, the release of (E)-cinnamate (2) is the rate-limiting step. With (2S,3S)-[3-(2)H1]phenylalanine (1a), we determined the kinetic D isotope effects with the PAL mutants Q487A, Y350F, L137 H, and the double mutant L137 H/Q487E. The kH/kD values for the former two were of the same magnitude as with wild-type PAL (1.20+/-0.07), while the exchange of L137 to H almost doubled the effect (kH/kD=2.32+/-0.01). We conclude that L137 is part of the hydrophobic pocket harboring the phenyl group of the substrate/product and is responsible for its strong binding. The stability of the HAL ammonia complex was demonstrated 40 years ago. Here, we show that, in contrast to the former assumption, ammonia in the complex is not covalently bound to the prosthetic electrophile, 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO; 5). We carried out experiments with a mutant enzyme lacking MIO and exhibiting ca. 10(3) times less activity. Nevertheless, the enzyme-ammonia complex was formed, and the mutant behaved upon addition of (E)-[14C]urocanate (4a) like wild-type HAL. We conclude, therefore, that ammonia is bound in the complex by Coulomb forces as ammonium ion and can be released only after (E)-urocanate (4).  相似文献   

6.
A F Hamnett  G E Pratt 《Life sciences》1983,32(24):2747-2753
The corpora allata from adult female Locusta migratoria metabolize precocene I (7-methoxy-2,2-dimethyl-2H-benzo [b]pyran to cis- & trans-precocene I dihydrodiols (3,4-dihydro-7-methoxy-2,2-dimethyl-2H-benzo [b]pyran-3,4-diol). Derivatization of the dihydrodiols with (-)menthoxy acetyl chloride allowed complete resolution of all four optical isomers. When [4-3H]-precocene I was incubated in vitro with Locusta migratoria corpora allata, it was metabolized stereospecifically to (-)trans-(3R,4S) and (+)cis-(3R,4R) dihydrodiols. Approximately half the precosyl residues bound to cellular macromolecules were discharged by heating to 95 degrees C at neutral pH, as dihydrodiols of the same stereochemistry.  相似文献   

7.
To investigate the anti-proliferative effect of a newly discovered NF-kB inhibitor, 6,6-dimethyl-2-(phenylimino)-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-one (1a), a series of its analogs (1b-n) were prepared and evaluated for their NF-κB inhibition and anti-proliferative activity against various human cancer cell lines. Slight variation of hydrophobicity by replacement of dimethyl group of 1a at 6-position with bulky isopropyl group and introduction of para-fluoro substitution on 2-phenyl group showed good NF-κB inhibitory activity and anti-proliferative activity. However, excessive increase in hydrophobicity with 2,4,6-trichloro substituents on phenyl group resulted in the loss of both the activities. From the SAR results, 2-phenylimino-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-one was identified as the lead scaffold for investigating new anticancer agent through inactivation of NF-κB.  相似文献   

8.
The mechanism of the heme-thiolate-dependent NADH-NO reductase (P450(NOR)) from Fusarium oxysporum was investigated by kinetic isotope effects including protio, [4S-2H]-, [4R-2H]-, [4,4(2)H(2)]-NADH and stopped-flow measurements. The respective kinetic isotope effects were measured at high NO concentrations and were found to be 1.7, 2.3 and 3.8 indicating a rate-limitation at the reduction step and a moderate stereoselectivity in binding of the cofactor NADH. In a different approach the kinetic isotope effects were determined directly for the reaction of the Fe(III)-NO complex with [4R-2H]- and [4S-2H]-NADH by stopped-flow spectroscopy. The resulting isotope effects were 2.7+/-0.4 for the R-form and 1.1+/-0.1 for the S-form. In addition the 444 nm intermediate could be chemically generated by addition of an ethanolic borohydride solution to the ferric-NO complex at -10 degrees C. In pulse radiolysis experiments a similar absorbing species could be observed when hydroxylamine radicals were generated in the presence of Fe (III) P450(NOR). Based on these results we postulate hydride transfer from NADH to the ferric P450-NO complex resulting in a ferric hydroxylamine-radical or ferryl hydroxylamine-complex and this step, as indicated by the kinetic isotope effects, to be rate-limiting at high concentrations of NO. However, at low concentrations of NO the decay of the 444 nm species becomes the rate-limiting step as envisaged by stopped-flow and optical kinetic measurements in a system in which NO was continuously generated. The last step in the catalytic cycle may proceed by a direct addition of the NO radical to the Fe-hydroxylamine complex or by electron transfer from the NO radical to the ferric-thiyl moiety in analogy to the postulated mechanisms of prostacyclin and thromboxane biosynthesis by the corresponding P450 enzymes. The latter process of electron transfer could then constitute a common step in all heme-thiolate catalyzed reactions.  相似文献   

9.
A new series of 4-(1,3-dialkyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrrolo[3,2-d]pyrimidin-6-yl)benzenesulfonamides has been identified as potent A2B adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A2B, A1 and A3 adenosine receptors. 6-(4-{[4-(4-Bromobenzyl)piperazin-1-yl]sulfonyl}phenyl)-1,3-dimethyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione (16) showed a high affinity for the A2B adenosine receptor (IC50=1 nM) and selectivity (A1: 183x; A3: 12660x). Synthesis and SAR of this novel class of compounds showing improved absorption properties is presented herein.  相似文献   

10.
The profile of [3H]RX821002 (2-methoxy idazoxan) binding to alpha2-adrenoceptor subtypes in rat kidney membranes was evaluated in controls and after chronic treatment with desipramine (10 mg/kg, i.p., every 12 h, 7 days) or clorgyline (2 mg/kg, i.p., every 24 h, 21 days). [3H]RX821002 recognized with high affinity (Kd=1.5+/-0.2 nM in controls) a single and saturable population of binding sites (Bmax=57+/-5 fmol/mg protein in controls). The competitions by (-)-adrenaline, the alpha2B-adrenoceptor selective drug ARC239 (2-[2-[4-(o-methoxyphenyl)-piperazin-1-yl]-ethyl]-4,4-dimethyl-1,3 (2H,4H)-isoquinolindione) and the alpha2A-adrenoceptor selective drug BRL44408 (2-[2H-(1-methyl-1,3-dihydroisoindole)methyl]-4,5-dihydroimidaz ole) suggested the existence of both alpha2A- and alpha2B-adrenoceptors together with a non-adrenoceptor binding site. After chronic desipramine but not after chronic clorgyline treatments, the density (Bmax) of alpha2-adrenoceptors was increased (46%). In the presence of ARC239 (50 nM), the density of alpha2A-adrenoceptors increased (44%) in the desipramine-treated group without changes in the clorgyline-treated group. Conversely, in the presence of BRL44408 (100 nM), the density of alpha2B-adrenoceptors was not affected by the treatments. The selective upregulation of the alpha2A-adrenoceptor subtype following chronic desipramine administration is compatible with a differential location and function of the alpha2-adrenoceptor subtypes in the rat kidney.  相似文献   

11.
Two new stllbenes with two Isoprenoid groups, namely artostllbenes A (compound 1) and B (compound 2), were Isolated from the stems of Arfocarpus chama Buch.-Ham. by repeated column chromatography. The& structures were elucldated as (E)-4-[2-(7-meth-xy-2-2-d-methy-6-(3-methy-but-2-eny-)-2H-1-benz-pyran-5-y-)v-ny-]benzene-1- 2-dlol (compound 1) and (Z)-4-[2-(7-meth-xy-2-2-dimethy--6-(3-methy-but-2-eny-)-2H-1-benz-pyran-5-y-)v-ny-]ben- zene-l,2-dlol (compound 2) by spectroscopic methods, mainly by 1D-, 2D-NMR and MS spectra. Compounds 1 and 2 are two cls- and trans-lsomers and compound 2 is the flrst cis-stllbene isolated from Moraceous plants.  相似文献   

12.
The mechanism of 3-dehydroquinate synthase was explored by incubating partially purified enzyme with mixtures of [1-14C]3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) and one of the specifically tritiated substrates [4-3H]DAHP, [5-3H]DAHP, [6-3H]DAHP, (7RS)-[7-3H]DAHP, (7R)-[7-3H]DAHP, or (7S)-[7-3H]DAHP. Kinetic and secondary 3H isotope effects were calculated from 3H:14C ratios obtained in unreacted DAHP, 3-dehydroquinate, and 3-dehydroshikimate. 3H was not incorporated from the medium into 3-dehydroquinate, indicating that a carbanion (or methyl group) at C-7 is not formed. A kinetic isotope effect kH/k3H of 1.7 was observed at C-5, and afforded support for a mechanism involving oxidation of C-5 with NAD. A similar kinetic isotope effect was found at C-6 owing to removal of a proton in elimination of phosphate, which is reasonably assumed to be the next step in 3-dehydroquinate synthase. Hydrogen at C-7 of DAHP was not lost in the cyclization step of the reaction, indicating that the enol formed in phosphate elimination participated directly in an aldolase-type reaction with the carbonyl at C-2. In the dehydration of 3-dehydroquinate to 3-dehydroshikimate the (7R) proton from (7RS)- or (7R)-[7-3H]DAHP is lost, indicating that the 7R proton occupies the 2R position in dehydroquinate. Hence the cyclization step occurs with inversion of configuration at C-7. A kinetic isotope effect kH/k3H = 2.3 was observed in the conversion of (2R)-[2-3H]dehydroquinate to dehydroshikimate. Hence loss of a proton from the enzyme-dehydroquinate imine contributed to rate limitation in the reaction.  相似文献   

13.
All strains of Comamonas testosteroni investigated here, produced quinohaemoprotein ethanol dehydrogenase (QH-EDH) when grown on ethanol or butanol, but one strain of C. acidovorans and of C. terrigena did not. Hybridization experiments showed that the gene for QH-EDH is absent in the latter two strains. Induction and properties of the QH-EDHs seem to be similar: all C. testosteroni strains produced the enzyme in its apo-form [without pyrroloquinoline quinone (PQQ)] and the levels were higher at growth at low temperature; preference for the R-enentiomer and similar selectivity was shown in the oxidation of solketal (2,2-dimethyl-1,3-dioxolane-4-methanol) by cells (supplemented with PQQ); the fragment of the qhedh gene gave high hybridization with the DNA of the C. testosteroni strains. Experiments with C. testosteroni LMD 26.36 revealed that the organism is well suited for production of (S)-solketal: it shows an adequate enantioselectivity (E value of 49) for the oxidation of racemic solketal; the conversion rate of (R)-solketal is only 3.5 times lower than that of ethanol; the optimal pH for conversion (7.6) is in a region where solketal has sufficient chemical stability; separation of the remaining (S)-solketal from the acid formed is simple; induction of QH-EDH, the sole enzyme responsible for the oxidation of (R)-solketal, occurs during growth on ethanol or butanol so that the presence of solketal (inhibitory for growth) is not required; production of active cells and the conversion step can be integrated into one process, provided that PQQ and solketal addition occur at the appropriate moment; the conversion seems environmentally feasible. However, since high concentrations of solketal inhibit respiration via QH-EDH, further investigations on the mechanism of inhibition and the stability of the enzyme might be rewarding as it could lead to application of higher substrate concentrations with consequently lower down-stream processing costs.  相似文献   

14.
ABCG2 transports sulfated conjugates of steroids and xenobiotics   总被引:11,自引:0,他引:11  
The mechanism for the cellular extrusion of sulfated conjugates is still unknown. In the present study, we investigated whether human wild type ABCG2 transports estrone 3-sulfate (E1S) using membrane vesicles from cDNA-transfected mouse lymphoma cell line (P388 cells). The uptake of [3H]E1S into ABCG2-expressing membrane vesicles was stimulated by ATP, and the Km value for [3H]E1S was determined to be 16.6 microm. The ABCG2-mediated transport of [3H]E1S was potently inhibited by SN-38 and many sulfate conjugates but not by glucuronide and glutathione conjugates or other anionic compounds. Other sulfate conjugates such as [3H]dehydroepiandrosterone sulfate (DHEAS) and [35S]4-methylumbelliferone sulfate (Km = 12.9 microm) and [35S]6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl)benzothiazole (E3040) sulfate (Km = 26.9 microm) were also transported by ABCG2. Although [3H]methotrexate, [3H]17beta-estradiol-17beta-D-glucuronide, [3H]2,4-dinitrophenyl-S-glutathione, and [14C]4-methylumbelliferone glucuronide were transported by ABCG2, this took place to a much lesser extent compared with [3H]E1S. It was suggested that ABCG2 preferentially transports sulfate conjugates and that E1S and DHEAS are the potential physiological substrates for this transporter.  相似文献   

15.
The single-step synthesis of 3-hydroxy carboxylic acids from readily available Meldrum's acids involves a selective monoreduction using a SmI(2)-H(2)O complex to give products in high crude purity, and it represents a considerable advancement over other methods for the synthesis of 3-hydroxy acids. The protocol includes a detailed guide to the preparation of a single electron-reducing SmI(2)-H(2)O complex and describes two representative examples of the methodology: monoreduction of a fully saturated Meldrum's acid (5-(4-bromobenzyl)-2,2-dimethyl-1,3-dioxane-4,6-dione) and tandem conjugate reduction-selective monoreduction of α,β-unsaturated Meldrum's acid (5-(4-methoxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione). The protocol for selective monoreduction of Meldrum's acids takes ~6 h to complete.  相似文献   

16.
rac-1-[1-14C]Lauroyl-2-oleylglycero-3-phospho[methyl-3H]choline and rac-1-lauroyl-2-[1-14C]oleoylglycero-3-phospho[methyl-3H]choline along with rac-1-palmitoyl-2-oleylglycero-3-phosphocholine and sn-1-palmitoyl-2-oleylglycero-3-phosphocholine were synthesized and subjected to hydrolysis with phospholipase C (EC 3.1.4.3) from Clostridium perfringens and phospholipase D (EC 3.1.4.4) from cabbage. Kinetics of hydrolysis of the radioactive substrates were determined by measuring the 3H radioactivity retained in the aqueous phase due to free choline and phosphocholine and the 3H and 14C radioactivity recovered in the organic phase due to the released diacylglycerols and phosphatidic acids and the residual phosphatidylcholines. The rate of hydrolysis of the unlabelled substrates by phospholipase C was determined by thin-layer chromatography and gas-liquid chromatography of the methanolysis products. The relative initial rates of hydrolysis of sn-1,2,- and sn-2,3-enantiomers were 100-200:1 for phospholipase C and 40-50:1 for phospholipase D using rac-1-lauroyl-2-oleoylglycero-3-phosphocholine as the substrate. The substitution of the 2-acyl group by an alkyl group resulted in a loss of stereospecificity, which was partial for phospholipase C (relative rates equal to 8-13:1) and total for phospholipase D. There was a parallel dramatic decrease (500-1000-fold) in the initial rate of hydrolysis with phospholipase C but the activity of phospholipase D was only moderately reduced (18-fold). These findings are consistent with the earlier observed loss of the stereospecificity of lipoprotein lipase following introduction of a 2-alkyl group into triacylycerols, and point to a general unsuitability of 2-alkyl-linked acylglycerols as substrates for the assay of the stereospecificity of lipases, as well as for the isolation of enantiomeric 2-alkylacylglycerols by means of stereospecific lipases.  相似文献   

17.
2,2-dimethyl-4-phenyl-5-[4-(methylsulfinyl)phenyl]-3(2H)furanone derivatives, 3 and 6, were shown to be effectively transformed in vivo into the corresponding methylsulfone derivatives 1 and 4, when orally administered to rats. Pharmacological implications for use of sulfoxide analogues 3 and 6 are discussed as prodrugs to potent selective COX-2 inhibitors 1 and 4.  相似文献   

18.
Silva RG  Schramm VL 《Biochemistry》2011,50(42):9158-9166
The reversible phosphorolysis of uridine to generate uracil and ribose 1-phosphate is catalyzed by uridine phosphorylase and is involved in the pyrimidine salvage pathway. We define the reaction mechanism of uridine phosphorylase from Trypanosoma cruzi by steady-state and pre-steady-state kinetics, pH-rate profiles, kinetic isotope effects from uridine, and solvent deuterium isotope effects. Initial rate and product inhibition patterns suggest a steady-state random kinetic mechanism. Pre-steady-state kinetics indicated no rate-limiting step after formation of the enzyme-products ternary complex, as no burst in product formation is observed. The limiting single-turnover rate constant equals the steady-state turnover number; thus, chemistry is partially or fully rate limiting. Kinetic isotope effects with [1'-(3)H]-, [1'-(14)C]-, and [5'-(14)C,1,3-(15)N(2)]uridine gave experimental values of (α-T)(V/K)(uridine) = 1.063, (14)(V/K)(uridine) = 1.069, and (15,β-15)(V/K)(uridine) = 1.018, in agreement with an A(N)D(N) (S(N)2) mechanism where chemistry contributes significantly to the overall rate-limiting step of the reaction. Density functional theory modeling of the reaction in gas phase supports an A(N)D(N) mechanism. Solvent deuterium kinetic isotope effects were unity, indicating that no kinetically significant proton transfer step is involved at the transition state. In this N-ribosyl transferase, proton transfer to neutralize the leaving group is not part of transition state formation, consistent with an enzyme-stabilized anionic uracil as the leaving group. Kinetic analysis as a function of pH indicates one protonated group essential for catalysis and for substrate binding.  相似文献   

19.
D A Julin  J F Kirsch 《Biochemistry》1989,28(9):3825-3833
The C alpha primary hydrogen kinetic isotope effects (C alpha-KIEs) for the reaction of the cytoplasmic isozyme of aspartate aminotransferase (cAATase) with [alpha-2H]-L-aspartate are small and only slightly affected by deuterium oxide solvent (DV = 1.43 +/- 0.03 and DV/KAsp = 1.36 +/- 0.04 in H2O; DV = 1.44 +/- 0.01 and DV/KAsp = 1.61 +/- 0.06 in D2O). The D2O solvent KIEs (SKIEs) are somewhat larger and are essentially independent of deuterium at C alpha (D2OV = 2.21 +/- 0.07 and D2OV/KAsp = 1.70 +/- 0.03 with [alpha-1H]-L-aspartate; D2OV = 2.34 +/- 0.12 and D2OV/KAsp = 1.82 +/- 0.06 with [alpha-2H]-L- aspartate). The C alpha-KIEs on V and on V/KAsp are independent of pH from pH 5.0 to pH 10.0. These results support a rate-determining concerted 1,3 prototropic shift mechanism by the multiple KIE criteria [Hermes, J. D., Roeske, C. A., O'Leary, M. H., & Cleland, W. W. (1982) Biochemistry 21, 5106]. The large C alpha-KIEs for the reaction of mitochondrial AATase (mAATase) with L-glutamate (DV = 1.88 +/- 0.13 and DV/KGlu = 3.80 +/- 0.43 in H2O; DV = 1.57 +/- 0.05 and DV/KGlu = 4.21 +/- 0.19 in D2O) coupled with the relatively small SKIEs (D2OV = 1.58 +/- 0.04 and D2OV/KGlu = 1.25 +/- 0.05 with [alpha-1H]-L-glutamate; D2OV = 1.46 +/- 0.06 and D2OV/KGlu = 1.16 +/- 0.05 with [alpha-2H]-L-glutamate) are most consistent with a two-step mechanism for the 1,3 prototropic shift for this isozyme-substrate pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
4-Oxalocrotonate decarboxylase (4-OD) and vinylpyruvate hydratase (VPH) from Pseudomonas putida mt-2 form a complex that converts 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate in the catechol meta fission pathway. To facilitate mechanistic and structural studies of the complex, the two enzymes have been coexpressed and the complex has been purified to homogeneity. In addition, Glu-106, a potential catalytic residue in VPH, has been changed to glutamine, and the resulting E106QVPH mutant has been coexpressed with 4-OD and purified to homogeneity. The 4-OD/E106QVPH complex retains full decarboxylase activity, with comparable kinetic parameters to those observed for 4-OD in the wild-type complex, but is devoid of any detectable hydratase activity. Decarboxylation of (5S)-2-oxo-3-[5-D]hexenedioate by either the 4-OD/VPH complex or the mutant complex generates 2-hydroxy-2,4E-[5-D]pentadienoate in D(2)O. Ketonization of 2-hydroxy-2,4-pentadienoate by the wild-type complex is highly stereoselective and results in the formation of 2-oxo-(3S)-[3-D]-4-pentenoate, while the mutant complex generates a racemic mixture. These results indicate that 2-hydroxy-2, 4-pentadienoate is the product of 4-OD and that 2-oxo-4-pentenoate results from a VPH-catalyzed process. On this basis, the previously proposed hypothesis for the conversion of 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate has been revised [Lian, H., and Whitman, C. P. (1994) J. Am. Chem. Soc. 116, 10403-10411]. Finally, the observed (13)C kinetic isotope effect on the decarboxylation of 2-oxo-3-hexenedioate by the 4-OD/VPH complex suggests that the decarboxylation step is nearly rate-limiting. Because the value is not sensitive to either magnesium or manganese, it is likely that the transition state for carbon-carbon bond cleavage is late and that the metal positions the substrate and polarizes the carbonyl group, analogous to its role in oxalacetate decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号