首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformation-competent, replication-defective Epstein-Barr virus (EBV) recombinants which are deleted for 18 kbp of DNA encoding the largest EBNA intron and for 58 kbp of DNA between the EBNA1 and LMP1 genes were constructed. These recombinants were made by transfecting three overlapping cosmid-cloned EBV DNA fragments into cells infected with a lytic replication-competent but transformation-defective EBV (P3HR-1 strain) and were identified by clonal transformation of primary B lymphocytes into lymphoblastoid cell lines. One-third of the lymphoblastoid cell lines were infected with recombinants which had both deletions and carried the EBNA2 and EBNA3 genes from the transfected EBV DNA and therefore are composed mostly or entirely from the transfected EBV DNA fragments. The deleted DNA is absent from cells infected with most of these recombinants, as demonstrated by Southern blot and sensitive PCR analyses for eight different sites within the deleted regions. Cell growth and EBNA, LMP, and BZLF1 gene expression in lymphoblastoid cell lines infected with these recombinants are similar to those in cells infected with wild-type EBV recombinants. Together with previous data, these experiments reduce the complexity of the EBV DNA necessary for transformation of primary B lymphocytes to 64 kbp. The approach should be useful for molecular genetic analyses of transforming EBV genes or for the insertion of heterologous fragments into transforming EBV genomes.  相似文献   

2.
Cell lines were established by co-transfection of cloned M-ABA Epstein-Barr virus (EBV) DNA fragments with plasmids conferring resistance to dominant selective markers. A baby hamster kidney cell line carrying the HindIII-I1 fragment exhibits a nuclear antigen of 82 000 daltons, serologically defined as EBV-determined nuclear antigen (EBNA) 1. Furthermore, a Rat-1 cell line transfected with DNA of the clone pM 780-28 containing three large internal repeats (BglII-U) and the adjacent BglII-C fragment expresses a nuclear antigen of 82 000 daltons which can be visualized only by a subset of anti EBNA-positive human sera. Sera recognizing the 82 000-dalton protein of the transfected cell line reacted with a protein of the same size in the non-producer line Raji, designated as EBNA 2. Conversely, sera without reactivity to the 82 000-dalton protein failed to react with EBNA 2 of Raji cells. P3HR-1 and Daudi cells with large deletions in BglII-U and -C are devoid of EBNA 2. The data presented provide evidence that a second EBNA protein is encoded by the region of the EBV genome which is deleted in the non-transforming P3HR-1 strain.  相似文献   

3.
This study was undertaken to develop a general strategy for the introduction of mutations into specific sites in the Epstein-Barr virus (EBV) genome. Previous approaches were limited by the need for physical linkage of the transfected EBV DNA fragment to a positive selection marker. In our experiments, a positive selection marker was introduced into one site in the EBV genome and a distant, nonlinked, marker was introduced into another site. Each marker was on a large EBV DNA fragment and was inserted into the genome by transfection into cells carrying a resident EBV genome. The resident EBV genome was simultaneously induced to replicate by using a cotransfected expression plasmid for the EBV immediate-early transactivator, Z (J. Countryman, H. Jenson, R. Seibl, H. Wolf, and G. Miller, J. Virol. 61:3672-3679, 1987; G. Miller, M. Rabson, and L. Heston, J. Virol. 50:174-182, 1984). Eleven percent of the resultant EBV genomes which incorporated the positive selection marker also incorporated the nonlinked marker. Both markers uniformly targeted the homologous EBV genome site. In this way novel EBV recombinants were constructed in which the EBV type 1 EBNA 3A, EBV type 1 EBNA 3A and 3B, or EBV type 1 EBNA 3A, 3B, and 3C genes were introduced into a largely type 2 EBV genome, replacing the corresponding type 2 gene(s). No difference was observed in primary B-lymphocyte growth transformation, in latent EBV gene expression, or in spontaneous lytic EBV gene expression. These new recombinants should be useful for ongoing analyses of the type specificity of the immune response.  相似文献   

4.
The six latent-cycle nuclear antigens (EBNAs) of Epstein-Barr virus (EBV), whose genes share 5' leader exons and two promoters (Cp and Wp), are differentially expressed by cells of the B lineage. To examine the possibility that EBNA gene expression is regulated through selective use of Cp and Wp, we monitored the activity of promoter-chloramphenicol acetyltransferase (CAT) gene constructs transfected into EBV-positive and EBV-negative B lymphocytes and Burkitt's lymphoma cells. Wp was a much stronger promoter than Cp in EBV genome-negative B-cell lines and was used exclusively in primary B cells. When B cells were infected with transforming EBV, Cp became the stronger promoter. This switch was not observed when B cells were infected with an immortalization-deficient virus, P3HR-1, which lacks the EBNA-2 open reading frame and expresses a mutant leader protein (EBNA-LP). Cp function was transactivated when EBV-negative or P3HR-1-infected B cells were cotransfected with Cp and a 12-kb fragment of DNA (BamHI-WWYH) that spanned the P3HR-1 deletion. This activity was mapped to the EBNA-2 gene within WWYH; constructs expressing EBNA-LP did not induce Cp function, and the deletion of 405 bp from the EBNA-2 open reading frame abolished transactivation. This research demonstrates host cell and EBNA-2 regulation of latent-cycle promoter activity in B lymphocytes, a mechanism with implications for persistence of EBV-infected lymphoid cells in vivo.  相似文献   

5.
The P3J-HR-1 strain of Epstein-Barr virus (EBV) fails to immortalize human lymphocytes. We wished to understand the nature of the genomic alterations which correlated with the loss of this ability. As a first step, the heterogeneity of DNA molecules in the P3J-HR-1 line was eliminated by cell cloning. Then a physical map was prepared of virion DNA from one cell clone, designated FF452-3. By comparison with the genomes of two EBVs, B95-8 and FF41, which are competent to immortalize lymphocytes, we identified a total of eight modifications of BamHI and EcoRI restriction endonuclease fragments of EBV (FF452-3) DNA consisting of insertions, deletions, or loss of a restriction endonuclease recognition site. To determine which of these alterations might be responsible for the loss of transforming phenotype, we examined homologous DNA fragments of the Jijoye strain of EBV, the progenitor of the HR-1 strain which still retains the ability to immortalize lymphocytes. We also studied viral DNA in lymphocytes transformed in vitro by Jijoye virus. Six of the eight alterations were found both in Jijoye and in clonal HR-1 DNA and were presumably genomic traits characteristic of this lineage of EBV. A small deletion in the BamHI-K fragment of HR-1 DNA was not found in Jijoye virion DNA, but this deletion was present in intracellular Jijoye DNA. Thus only one major genomic lesion in HR-1 DNA, a deletion of at least 2.4 x 10(6) molecular weight of DNA from a fused BamHI-H-Y fragment, consistently distinguished Jijoye DNA from its non-immortalizing P3J-HR-1 derivative. This deletion is likely to affect EBV genes which are directly or indirectly involved in immortalizing lymphocytes.  相似文献   

6.
Epstein-Barr virus (EBV) from a nasopharyngeal carcinoma (NPC) hybrid cell line (NPC-KT) lacking defective viral DNA molecules superinfected Raji cells and induced EBV early antigens (EA), as did virus from P3HR-1 cells, which contained defective molecules. The EBV polypeptides induced by NPC-KT appeared to be identical to those induced by P3HR-1 virus. The ability of NPC-KT virus to induce EA was enhanced more than 10-fold by treatment of superinfected cells with dimethyl sulfoxide; however, dimethyl sulfoxide treatment did not enhance superinfection by P3HR-1 virus. After infection, DNA synthesis of both the superinfecting NPC-KT virus and the resident Raji viral genome was induced. In addition to amplified Raji EBV episomal DNA, a fused terminal fragment of NPC-KT viral DNA was detected. The detection of fused terminal DNA fragments suggests that the superinfecting virion DNA either circularizes or polymerizes after superinfection and is possibly amplified through circular or concatenated replicative intermediates.  相似文献   

7.
Two Epstein-Barr virus (EBV) types, type 1 and type 2, maintain the same allelic specificity at four genomic loci encoding the EBNA2, -3A, -3B, and -3C proteins. We have previously described 16 EBV-transformed B-lymphoblastoid cell lines derived from Korean cancer patients, and the EBNA2 types of the EBV isolates therein. In this study, the allelic types of the EBNA2, -3A, -3B, and -3C genes of these EBV isolates were determined. We report the identification of two distinct types of naturally occurring intertypic recombinants, one with genotype EBNA2 type 1/EBN3A, -3B, -3C type 2 and the other with genotype EBNA2, -3A type 1/EBNA3B, -3C type 2. The existence of these intertypic recombinants indicates that various intertypic EBV strains may be circulating in the human population, in addition to typical EBV-1 and EBV-2 strains.  相似文献   

8.
M Kawanishi 《Journal of virology》1993,67(12):7654-7658
Pulsed-field agarose gel electrophoresis showed that fragmentation of chromosomal DNA in Raji cells was induced by infection with the P3HR-1 strain of Epstein-Barr virus (EBV). S1 nuclease treatment of the agarose plugs containing cells suggested that the majority of DNA fragments did not contain single-strand gaps. Chromosomal DNA fragmentation was inhibited by cycloheximide, indicating that protein synthesis was required for DNA fragmentation. Phosphonoacetic acid, an inhibitor of EBV DNA polymerase, did not inhibit fragmentation of chromosomal DNA. These findings suggest that EBV-specific early proteins participate in fragmentation of chromosomal DNA. Chromosomal DNA of P3HR-1 cells was also fragmented by treatment with n-butyrate plus 12-O-tetradecanoylphorbol-13-acetate (TPA), which induced activation of latent EBV genome following viral replication. In addition, fragmentation of DNA preceded cell death during lytic infection. These results suggest that fragmentation of chromosomal DNA is generally induced during EBV replication and probably contributes to the cytopathic effect of EBV. The role of DNA fragmentation in death of infected cells is discussed in relation to apoptosis.  相似文献   

9.
Epstein-Barr virus (EBV) utilizes a completely different mode of DNA replication during the lytic cycle than that employed during latency. The latency origin of replication, ori-P, which functions in the replication of the latent episomal form of the EBV genome, requires only a single virally encoded protein, EBNA-1, for its activity. During the lytic cycle, a separate origin, ori-Lyt, is utilized. Relatively little is known about the trans-acting proteins involved in ori-Lyt replication. We established a cotransfection-replication assay to identify EBV genes whose products are required for replication of ori-Lyt. In this assay, a BamHI-H plasmid containing ori-Lyt was replicated in Vero cells cotransfected with the BamHI-H target, the three EBV lytic-cycle transactivators Zta, Rta, and Mta, and the EBV genome provided in the form of a set of six overlapping cosmid clones. By removing individual cosmids from the cotransfection mixture, we found that only three of the six cosmids were necessary for ori-Lyt replication. Subcloning of the essential cosmids led to the identification of six EBV genes that encode replication proteins. These genes and their functions (either known or predicted on the basis of sequence comparison with herpes simplex virus) are BALF5, the DNA polymerase; BALF2, the single-stranded DNA-binding protein homolog; BMRF1, the DNA polymerase processivity factor; BSLF1 and BBLF4, the primase and helicase homologs; and BBLF2/3, a potential homolog of the third component of the helicase-primase complex. In addition, ori-Lyt replication in this cotransfection assay was also dependent on one or more genes provided by the EBV SalI-F fragment and on the three lytic-cycle transactivators Zta, Rta, and Mta.  相似文献   

10.
M Ishiura  H Ohashi  N Hazumi  T Uchida  Y Okada 《Gene》1989,85(2):427-433
We constructed a series of cosmid vectors that carry two tandemly arranged lambda cos and mammalian selective markers. We achieved cloning efficiencies of 1-3 x 10(7) and greater than 10(6) colony-forming units per microgram of insert, using a cloned 42-kb BamHI fragment and Sau3AI fragments of 40-50 kb from mouse genomic DNA, respectively. The modified Ca.phosphate coprecipitation method [Ishiura et al., Mol. Cell. Biol. 2 (1982) 607-616] considerably improved the efficiency of gene transfer of cosmids into cultured mammalian cells: when genes encoding thymidine kinase from herpes simplex virus type 1 and aminoglycoside 3'-phosphoribosyltransferase from Tn5 were selected, the efficiencies of gene transfer into mouse L cells were about 10(-6). The mouse genome contains one copy of the functional gene for elongation factor 2 (EF2) per haploid genome and multiple copies of the EF2-related gene. We isolated a cosmid that carried functional full-length mouse EF2 from a cosmid library of L-cell genomic DNA, by colony hybridization and subsequent gene transfer of candidate cosmids into human 143B cells.  相似文献   

11.
Among the Epstein-Barr virions (EBV) produced by the P3HR-1 (HR-1) cell line are a defective subpopulation with rearranged viral DNA designated heterogeneous DNA (het DNA). These defective virions are responsible for the capacity of HR-1 virus to induce early antigen in Raji c cells and for trans activation of latent EBV in X50-7 cells. Virions with het DNA are independent replicons which pass horizontally from cell to cell rather than being partitioned vertically. We analyzed the structure and defined several polypeptide products of het DNA to understand these remarkable biologic properties. A 36-kilobase-pair (kbp) stretch of het DNA was cloned (as two EcoRI fragments of 20 and 16 kbp) from virions released from a cellular subclone of HR-1 cells. The unusual aspect of the 20-kbp fragment was the linkage of sequences of BamHI-M and BamHI-B', which are not adjacent on the standard EBV genome. The 16-kbp fragment was a palindrome in which at least two additional recombinations on each side of the palindrome had linked regions of the standard EBV genome which are not normally contiguous. The 20-kbp het DNA fragment was attached to at least one and possibly both ends of the 16-kbp het DNA fragment. We identified antigenic polypeptides produced in COS-1 cells after gene transfer of various cloned het DNA fragments. The 20-kbp fragment encoded a cytoplasmic antigen of about 95 kilodaltons (kDa). The 16-kbp fragment encoded antigens located in the nucleus, nuclear membrane, and cytoplasm. These were represented by several polypeptides, the most prominent of which were about 55, 52, and 36 kDa. The 36-kDa polypeptide was localized to a 2.7-kbp BamHI fragment which had homology to standard BamHI-W and BamHI-Z. Another polypeptide of 50 kDa found in the nucleus was mapped to the 7.1-kbp BamHI het DNA fragment which spans the EcoRI site linking the 20- and 16-kbp fragments of het DNA. Thus, HR-1 het DNA encodes several discrete polypeptide products, one or more of which could be responsible for the unusual biologic properties of the virus. The composition, regulation, and ultimately the expression of some of these products relative to standard EBV is probably altered by the genomic rearrangements of het DNA.  相似文献   

12.
Epstein-Barr virus (EBV), isolated from P3HR-1 cells, induces early antigen and viral capsid antigen upon infection of human B-lymphoblasts. The strong early antigen- and viral capsid antigen-inducing activity is only observed in P3HR-1 virus preparations harboring particles with defective genomes, suggesting that this biological activity is directly associated with the defective DNA population. After infection of EBV genome-carrying Raji or EBV genome-negative BJAB cells, defective genomes of P3HR-1 EBV DNA are replicated in excess, depending on the multiplicity of infecting EBV particles. Hybridization of the DNA from such infected cells with 32P-labeled EBV DNA after HindIII cleavage reveals six hypermolar fragments. Mapping of these fragments shows that they form one defective genome unit containing four nonadjacent regions (alpha, beta, gamma, and delta) of the nondefective P3HR-1 EBV DNA. Two of the segments (alpha and beta) contain ca. 17 and 13 megadaltons, respectively, from the terminal regions of the P3HR-1 genome, whereas the two smaller segments (gamma and delta) contain ca. 3.7 and 3.0 megadaltons, respectively, originating from the central portion of the genome. In the defective molecule, the regions gamma and delta are present in the opposite orientation compared with nondefective P3HR-1 EBV DNA. Tandem concatemers are formed by fusion of the alpha and beta regions. Our model suggests that tandem concatemers of three defective genome units can be packaged into virions in P3HR-1 cells.  相似文献   

13.
The ability of SV40-transformed human (ataxia-telangiectasia) fibroblasts to maintain Epstein-Barr virus (EBV)-based plasmids and cosmids extrachromosomally has been investigated. Transfection of a culture of cells with two different plasmids gave rise to cell clones which were able to maintain both plasmids extrachromosomally. When an EBV-based cosmid library was transfected into the cells and an individual cell clone was isolated, the extrachromosomal DNA derived from the cosmid contained numerous deletions and rearrangements. When individual cosmids were transfected into the culture, and several cell clones were isolated, the intracellular cosmid-derived DNA again showed the presence of multiple deletions and rearrangements. We conclude that although SV40-transformed cells are able to maintain more than one different EBV-based plasmid extrachromosomally, large EBV-derived molecules are extensively rearranged. SV40-transformed human fibroblasts cannot therefore be usefully used in attempting to clone genes from EBV-based cosmid libraries.  相似文献   

14.
The cleavage of the DNAs of the B95-8 and P3HR-1 virus strains of Epstein-Barr virus by the restriction endonucleases EcoRI, HindIII and BamI was investigated using a new technique for quantitative evaluation of the fluorescence of ethidium stained DNA fragments separated on agarose gels. The results obtained with B95-8 DNA showed that in addition to the limited repetitions of nucleotide sequences observed in the EcoRI and HindIII cleavage patterns, the molecule contained a BamI fragment with a molecular mass of 2.0 megadaltons which was present in a total of about 11 copies and localized to a limited part of the DNA molecule. The same sequences were also present in the P3HR-1 DNA albeit in a lower molar ratio. P3HR-1 DNA yielded restriction enzyme cleavage patterns suggesting DNA sequence heterogeneity of P3HR-1 virus. No fragment was present in more than about 4 copies per molecule of P3HR-1 DNA. Comparison of the restriction enzyme cleavage patterns of P3HR-1 and B95-8 DNA revealed a high degree of structural homology emphasized by nucleic acid hybridization experiments with EBV complementary RNA synthesized in vitro.  相似文献   

15.
We have previously characterized several genomic rearrangements of Epstein-Barr virus (EBV) DNA contained in one of the defective EBV genomes harbored by the P3HR-1 (HR-1) line (H. B. Jenson, M. S. Rabson, and G. Miller, J. Virol. 58:475-486, 1986). One recombinant clone of heterogeneous DNA (het DNA) from this defective genome is an EcoRI fragment of 16 kilobase pairs (kbp) which is a palindrome. DNA digestion fragments specific for the center of this palindrome were present in cells which contained het DNA but not in cells which lacked het DNA. Thus, the palindrome was not an artifact of DNA cloning. The organization of the center of this palindrome was studied by DNA sequencing. The comparable region of the parental HR-1 genome was also studied by DNA sequencing. The central 3,495 base pairs (bp) of the palindrome were composed of sequences derived exclusively from internal repeat 1 of EBV, represented by BamHI W fragment. At each end of the central 3,495 hp was a symmetrical recombination with sequences of BamHI-Z, located more than 50 kbp away on the standard EBV genome. The central 3,495 bp were composed of an unduplicated 341 bp flanked by two perfect palindromic repeats of 1,577 bp. The 341-bp unique region was a portion of a 387-bp region of standard HR-1 BamHI-W which was identical to the central 387 bp of the palindrome. This central 387-bp region contained numerous stretches of dyad symmetry capable of forming a large stem-and-loop structure. The palindromic rearrangement had created two novel open reading frames in het DNA derived from standard HR-1 BamHI-W sequences. These two het DNA open reading frames had different amino termini but identical carboxy termini derived from the large open reading frame in standard HR-1 BamHI-W (HR-1 BWRF1). The BamHI-W sequences found in het DNA did not include either the TATA box of standard HR-1 BamHI-W or the exons which are present in the potentially polycistronic latent mRNAs encoding EBV nuclear antigens. These marked alterations in genomic structure may relate to the unique biologic properties of virus stocks containing het DNA by creation of new polypeptides or by formation or deletion of regulatory or functional signals.  相似文献   

16.
17.
Physical mapping of a large-plaque mutation of adenovirus type 2.   总被引:34,自引:11,他引:23       下载免费PDF全文
We have developed a simple method based on cotransfection of overlapping DNA restriction fragments for construction of recombinants of adenovirus type 2 (Ad2) and Ad5. When Ad2 DNA digested with restriction endonuclease EcoRI was cotransfected with Ad5 DNA digested with SalI, recombination occurred between Ad2 EcoRI-A (map position 0 to 59) and Ad5 SalI-A (map position 45 to 100). Analysis of the recombinant DNAs by digestion with EcoRI or BamHI restriction endonucleases indicated that, as expected, recombination had occurred in overlapping sequences (map position 45 to 59) between the Ad2 EcoRI-A fragment and the Ad5 SalI-A fragment. By using this method, several recombinants were constructed between a large-plaque (lp) mutant of Ad2 and wild-type Ad5. Cleavage of the recombinant genomes with restriction endonucleases BamHI, EcoRI, and HindIII revealed that the lp mutation is located within the left 41% of Ad2 genome.  相似文献   

18.
Deletions and rearrangements in the genome of Epstein-Barr virus (EBV) strain P3HR-1 generate subgenomic infectious particles that, unlike defective interfering particles in other viral systems, enhance rather than restrict EBV replication in vitro. Reports of comparable heterogeneous (het) DNA in EBV-linked human diseases, based on detection of an abnormal juxtaposition of EBV DNA fragments BamHI W and BamHI Z that disrupts viral latency, prompted us to determine at the nucleotide level all remaining recombination joints formed by the four constituent segments of P3HR-1-derived het DNA. Guided by endonuclease restriction maps, we chose PCR primer pairs that approximated and framed junctions creating the unique BamHI M/B1 and E/S fusion fragments. Sequencing of PCR products revealed points of recombination that lacked regions of extensive homology between constituent fragments. Identical recombination junctions were detected by PCR in EBV-positive salivary samples from human immunodeficiency virus-infected donors, although the W/Z rearrangement that induces EBV reactivation was frequently found in the absence of the other two. In vitro infection of lymphoid cells similarly indicated that not all three het DNA rearrangements need to reside on a composite molecule. These results connote a precision in the recombination process that dictates both composition and regulation of gene segments altered by genomic rearrangement. Moreover, the apparent frequency of het DNA at sites of EBV replication in vivo is consistent with a likely contribution to the pathogenesis of EBV reactivation.  相似文献   

19.
The effect of acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein-Barr virus (EBV) DNA replication in the lymphoblastoid cell lines P3HR-1 and Raji is reported. Acyclovir at a concentration of 100 microM completely inhibited EBV DNA synthesis in superinfected Raji cells, but did not inhibit DNA synthesis in mock-infected cells. The number of EBV genome equivalents per cell in the virus-producing cell line P3HR-1 was significantly reduced by acyclovir, whereas the number of latent EBV genomes in Raji cells was not affected by the drug. In situ cytohybridization performed on untreated P3HR-1 cultures revealed the presence of relatively large amounts of EBV DNA in 15 to 20% of the cells. After a 100 microM drug treatment, no P3HR-1 cells contained levels of EBV DNA detectable by in situ cytohybridization. Indirect immunofluorescence studies demonstrated that during treatment with 100 microM acyclovir for 7 days, the percentage of P3HR-1 cells expressing viral capsid antigen was reduced. The EBV DNA remaining in P3HR-1 cells after treatment with 100 microM acyclovir (approximately 14 genomes per cell) had the properties of covalently closed circular DNA with an average molecular weight of 108 X 10(6), as determined by contour length measurements.  相似文献   

20.
The possibility of cloning large segments of DNA in cosmid vectors offers distinct advantages, in particular for the study of multigene families. Large size fragments of mouse embryo DNA were successfully cloned in the cosmid pHC 79. Twelve recombinants hybridizing specifically to an immunoglobulin kappa chain variable region probe were identified. In 9 of these recombinants, the size of the insert ranges from 30 to 43 kilobases. Factors affecting the cloning efficiency of a complex mammalian genome in cosmids were studied. The stability of these recombinant cosmids and the preparation of recombinant cosmid DNA are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号