首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

2.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

3.
In eukaryotes, phosphatidylserine (PtdSer) can serve as a precursor of phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho), which are the major cellular phospholipids. PtdSer synthesis originates in the endoplasmic reticulum (ER) and its subdomain named the mitochondria-associated membrane (MAM). PtdSer is transported to the mitochondria in mammalian cells and yeast, and decarboxylated by PtdSer decarboxylase 1 (Psd1p) to form PtdEtn. A second decarboxylase, Psd2p, is also found in yeast in the Golgi-vacuole. PtdEtn produced by Psd1p and Psd2p can be transported to the ER, where it is methylated to form PtdCho. Organelle-specific metabolism of the aminoglycerophospholipids is a powerful tool for experimentally following lipid traffic that is now enabling identification of new proteins involved in the regulation of this process. Genetic and biochemical experiments demonstrate that transport of PtdSer between the MAM and mitochondria is regulated by protein ubiquitination, which affects events at both membranes. Similar analyses of PtdSer transport to the locus of Psd2p now indicate that a membrane-bound phosphatidylinositol transfer protein and the C2 domain of Psd2p are both required on the acceptor membrane for efficient transport of PtdSer. Collectively, these recent findings indicate that novel multiprotein assemblies on both donor and acceptor membranes participate in interorganelle phospholipid transport.  相似文献   

4.
In mammalian cells, phosphatidylethanolamine (PtdEtn) is mainly synthesized via the CDP-ethanolamine (Kennedy) pathway and by decarboxylation of phosphatidylserine (PtdSer). However, the extent to which these two pathways contribute to overall PtdEtn synthesis both quantitatively and qualitatively is still not clear. To assess their contributions, PtdEtn species synthesized by the two routes were labeled with pathway-specific stable isotope precursors, d(3)-serine and d(4)-ethanolamine, and analyzed by high performance liquid chromatography-mass spectrometry. The major conclusions from this study are that (i) in both McA-RH7777 and Chinese hamster ovary K1 cells, the CDP-ethanolamine pathway was favored over PtdSer decarboxylation, and (ii) both pathways for PtdEtn synthesis are able to produce all diacyl-PtdEtn species, but most of these species were preferentially made by one pathway. For example, the CDP-ethanolamine pathway preferentially synthesized phospholipids with mono- or di-unsaturated fatty acids on the sn-2 position (e.g. (16:0-18:2)PtdEtn and (18:1-18:2)PtdEtn), whereas PtdSer decarboxylation generated species with mainly polyunsaturated fatty acids on the sn-2 position (e.g. (18:0-20:4)PtdEtn and (18:0-20:5)PtdEtn in McArdle and (18: 0-20:4)PtdEtn and (18:0-22:6)PtdEtn in Chinese hamster ovary K1 cells). (iii) The main PtdEtn species newly synthesized from the Kennedy pathway in the microsomal fraction appeared to equilibrate rapidly between the endoplasmic reticulum and mitochondria. (iv) Newly synthesized PtdEtn species preferably formed in the mitochondria, which is at least in part due to the substrate specificity of the phosphatidylserine decarboxylase, seemed to be retained in this organelle. Our data suggest a potentially essential role of the PtdSer decarboxylation pathway in mitochondrial functioning.  相似文献   

5.
The translocation of: (i) phosphatidylserine (PtdSer) from its site of synthesis on microsomal membranes to its site decarboxylation in mitochondrial membranes and (ii) phosphatidylethanolamine (PtdEtn) from the mitochondria to its site of methylation to phosphatidylcholine on microsomal membranes has been reconstituted in cell-free systems consisting of rat liver mitochondria and microsomes. Two types of systems have been reconstituted. In one, the translocation of newly made PtdSer or PtdEtn was examined by incubation of microsomes and mitochondria with [3-3H]serine. In the other, membranes were prelabeled with radioactive PtdSer or PtdEtn, and the transfer of these two lipids between mitochondria and microsomes was monitored. For the transfer of both PtdSer from microsomes to mitochondria and PtdEtn from mitochondria to microsomes, newly made phospholipids were translocated much more readily than pre-existing phospholipids. The data suggest that with respect to their translocation between these two organelles, the pools of newly synthesized PtdSer and PtdEtn were distinct from the pools of "older" phospholipids pre-existing in the membranes. Transfer of neither phospholipid in vitro depended on the presence of cytosolic proteins (i.e. soluble phospholipid transfer proteins) or on the hydrolysis of ATP, although there was some stimulation of PtdSer transfer by ATP and several other nucleoside mono-, di-, and triphosphates. The data are consistent with a collision-based mechanism in which the endoplasmic reticulum and mitochondria come into contact with one another, thereby effecting the transfer of phospholipids. The proposal that there is contact between the endoplasmic reticulum and mitochondria is supported by the recent isolation of a membrane fraction having many, but not all, of the properties of the endoplasmic reticulum, but which was isolated in association with mitochondria (Vance, J. E. (1990) J. Biol. Chem. 265, 7248-7256).  相似文献   

6.
In yeast, nascent phosphatidylserine (PtdSer) can be transported to the mitochondria and Golgi/vacuole for decarboxylation to synthesize phosphatidylethanolamine (PtdEtn). In strains with a psd1Delta allele for the mitochondrial PtdSer decarboxylase, the conversion of nascent PtdSer to PtdEtn can serve as an indicator of lipid transport to the locus of PtdSer decarboxylase 2 (Psd2p) in the Golgi/vacuole. We have followed the metabolism of [(3)H]serine into PtdSer and PtdEtn to study lipid transport in permeabilized psd1Delta yeast. The permeabilized cells synthesize (3)H-PtdSer and, after a 20-min lag, decarboxylate it to form [(3)H]PtdEtn. Formation of [(3)H]PtdEtn is linear between 20 and 100 min of incubation and does not require ongoing PtdSer synthesis. PtdSer transport can be resolved into a two-component system using washed, permeabilized psd1Delta cells as donors and membranes isolated by ultracentrifugation as acceptors. With this system, the transport-dependent decarboxylation of nascent PtdSer is dependent upon the concentration of acceptor membranes, requires Mn(2+) but not nucleotides, and is inhibited by EDTA. High speed membranes isolated from a previously identified PtdSer transport mutant, pstB2, contain normal Psd2p activity but fail to reconstitute PtdSer transport and decarboxylation. Reconstitution with permutations of wild type and pstB2Delta donors and acceptors identifies the site of the mutant defect as the acceptor side of the transport reaction.  相似文献   

7.
Phosphatidylethanolamine synthesis through the phosphatidylserine (PtdSer) decarboxylation pathway requires PtdSer transport from the endoplasmic reticulum or mitochondrial-associated membrane to the mitochondrial inner membrane in mammalian cells. The transport-dependent PtdSer decarboxylation in permeabilized Chinese hamster ovary (CHO) cells was enhanced by cytosolic factors from bovine brain. A cytosolic protein factor exhibiting this enhancing activity was purified, and its amino acid sequence was partially determined. The sequence was identical to part of the amino acid sequence of an EF-hand type calcium-binding protein, S100B. A His(6)-tagged recombinant CHO S100B protein was able to remarkably enhance the transport-dependent PtdSer decarboxylation in permeabilized CHO cells. Under the standard assay conditions for PtdSer decarboxylase, the recombinant S100B protein did not stimulate PtdSer decarboxylase activity and exhibited no PtdSer decarboxylase activity. These results implicated the S100B protein in the transport of PtdSer to the mitochondrial inner membrane.  相似文献   

8.
The synthesis of phosphatidylserine and its translocation to the mitochondria were examined in permeabilized Chinese hamster ovary (CHO)-K1 cells by following the metabolism of a [3H]serine precursor to [3H] phosphatidylserine (PtdSer) and [3H]phosphatidylethanolamine (PtdEtn). In physiological salt solutions approximating the intracellular ionic composition, both the synthesis of PtdSer and its translocation required ATP. The ATP requirement for PtdSer synthesis could be completely bypassed, and that for translocation could be partially bypassed at Ca2+ concentrations 10(3)-10(4) times the intracellular physiological level (i.e. 1 mM). The ATP-dependent synthesis of PtdSer could be inhibited by chelation of Ca2+ with EGTA, inhibition of Ca2+ sequestration with 2,5-di(tert-butyl)hydroquinone, mobilization of sequestered Ca2+ with ionomycin, and competition for [3H]serine with ethanolamine. The inhibition of the ATP-dependent synthesis of PtdSer by the aforementioned inhibitors provided an efficient method to rapidly arrest the incorporation of [3H]serine into [3H]PtdSer. By pulse-labeling the [3H]PtdSer pool and arresting further synthesis with inhibitors, the translocation of nascent PtdSer could be uncoupled from synthesis. The results of these pulse-labeling-arrest experiments provide unambiguous evidence that PtdSer translocation to the mitochondria is not driven by PtdSer synthesis. The addition of apyrase to ATP-supplemented, permeabilized cells abruptly terminates [3H]serine incorporation into [3H]PtdSer and the decarboxylation of [3H]PtdSer to [3H]PtdEtn, thereby demonstrating that a specific ATP requirement exists for the translocation of nascent PtdSer to the mitochondria in permeabilized cells. The translocation of nascent PtdSer to the mitochondria was unaffected by 45-fold dilution of the standard reaction thus indicating that the translocation intermediate was unlikely to be a freely diffusible complex. The requirements for translocation of nascent phosphatidylserine are different from those for the vesicular movement of proteins insofar as the lipid movement does not require cytosol and is unaffected by the addition of Ca2+, GTP, or GTP gamma S. From these studies, we conclude that: 1) the synthesis and translocation of PtdSer can be readily studied in permeabilized cells, 2) the ATP-dependent synthesis of PtdSer is functionally coupled to the ATP-dependent sequestration of Ca2+ by the endoplasmic reticulum or closely related membranes, 3) PtdSer translocation is independent of its synthesis, and 4) there is a specific requirement for ATP in the translocation of PtdSer to the mitochondria.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, three pathways lead to the formation of cellular phosphatidylethanolamine (PtdEtn), namely the mitochondrial conversion of phosphatidylserine (PtdSer) to PtdEtn catalyzed by phosphatidylserine decarboxylase 1 (Psd1p), the equivalent reaction catalyzed by phosphatidylserine decarboxylase 2 (Psd2p) in the Golgi, and the CDP-ethanolamine branch of the so-called Kennedy pathway which is located to the microsomal fraction. To investigate the contributions of these three pathways to the cellular pattern of PtdEtn species (fatty acid composition) we subjected lipids of wild-type and yeast mutant strains with distinct defects in the respective pathways to mass spectrometric analysis. We also analyzed species of PtdSer and phosphatidylcholine (PtdCho) of these strains because formation of the three aminoglycerophospholipids is linked through their biosynthetic route. We demonstrate that all three pathways involved in PtdEtn synthesis exhibit a preference for the formation of C34:2 and C32:2 species resulting in a high degree of unsaturation in total cellular PtdEtn. In PtdSer, the ratio of unsaturated to saturated fatty acids is much lower than in PtdEtn, suggesting a high species selectivity of PtdSer decarboxylases. Finally, PtdCho is characterized by its higher ratio of C16 to C18 fatty acids compared to PtdSer and PtdEtn. In contrast to biosynthetic steps, import of all three aminoglycerophospholipids into mitochondria of wild-type and mutant cells is not highly specific with respect to species transported. Thus, the species pattern of aminoglycerophospholipids in mitochondria is mainly the result of enzyme specificities, but not of translocation processes involved. Our results support a model that suggests equilibrium transport of aminoglycerophospholipids between mitochondria and microsomes based on membrane contact between the two compartments.  相似文献   

10.
Phospholipid synthesis in a membrane fraction associated with mitochondria   总被引:23,自引:0,他引:23  
A crude rat liver mitochondrial fraction that was capable of the rapid, linked synthesis of phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) labeled from [3-3H] serine has been fractionated. PtdSer synthase, PtdEtn methyltransferase, and CDP-choline:diacylglycerol cholinephosphotransferase activities were present in the crude mitochondrial preparation but were absent from highly purified mitochondria and could be attributed to the presence of a membrane fraction, X. Thus, previous claims of the mitochondrial location of some of these enzymes might be explained by the presence of fraction X in the mitochondrial preparation. Fraction X had many similarities to microsomes except that it sedimented with mitochondria (at 10,000 x g). However, the specific activities of PtdSer synthase and glucose-6-phosphate phosphatase in fraction X were almost twice that of microsomes, and the specific activities of CTP:phosphocholine cytidylyltransferase and NADPH:cytochrome c reductase in fraction X were much lower than in microsomes. The marker enzymes for mitochondria, Golgi apparatus, plasma membrane, lysosomes, and peroxisomes all had low activities in fraction X. Polyacrylamide gel electrophoresis revealed distinct differences, as well as similarities, among the proteins of fraction X, microsomes, and rough and smooth endoplasmic reticulum. The combined mitochondria-fraction X membranes can synthesize PtdSer, PtdEtn, and PtdCho from serine. Thus, fraction X in combination with mitochondria might be responsible for the observed compartmentalization of a serine-labeled pool of phospholipids previously identified (Vance, J. E., and Vance, D. E. (1986) J. Biol. Chem. 261, 4486-4491) and might be involved in the transfer of lipids between the endoplasmic reticulum and mitochondria.  相似文献   

11.
In the yeast, three biosynthetic pathways lead to the formation of phosphatidylethanolamine (PtdEtn): (i) decarboxylation of phosphatidylserine (PtdSer) by phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria; (ii) decarboxylation of PtdSer by Psd2p in a Golgi/vacuolar compartment; and (iii) the CDP-ethanolamine (CDP-Etn) branch of the Kennedy pathway. The major phospholipid of the yeast, phosphatidylcholine (PtdCho), is formed either by methylation of PtdEtn or via the CDP-choline branch of the Kennedy pathway. To study the contribution of these pathways to the supply of PtdEtn and PtdCho to mitochondrial membranes, labeling experiments in vivo with [(3)H]serine and [(14)C]ethanolamine, or with [(3)H]serine and [(14)C]choline, respectively, and subsequent cell fractionation were performed with psd1Delta and psd2Delta mutants. As shown by comparison of the labeling patterns of the different strains, the major source of cellular and mitochondrial PtdEtn is Psd1p. PtdEtn formed by Psd2p or the CDP-Etn pathway, however, can be imported into mitochondria, although with moderate efficiency. In contrast to mitochondria, microsomal PtdEtn is mainly derived from the CDP-Etn pathway. PtdEtn formed by Psd2p is the preferred substrate for PtdCho synthesis. PtdCho derived from the different pathways appears to be supplied to subcellular membranes from a single PtdCho pool. Thus, the different pathways of PtdEtn biosynthesis play different roles in the assembly of PtdEtn into cellular membranes.  相似文献   

12.
Mitochondrial membrane biogenesis requires the interorganelle transport of phospholipids. Phosphatidylserine (PtdSer) synthesized in the endoplasmic reticulum and related membranes (mitochondria-associated membrane (MAM)) is transported to the mitochondria by unknown gene products and decarboxylated to form phosphatidylethanolamine at the inner membrane by PtdSer decarboxylase 1 (Psd1p). We have designed a screen for strains defective in PtdSer transport (pstA mutants) between the endoplasmic reticulum and Psd1p that relies on isolating ethanolamine auxotrophs in suitable (psd2Delta) genetic backgrounds. Following chemical mutagenesis, we isolated an ethanolamine auxotroph that we designate pstA1-1. Using in vivo and in vitro phospholipid synthesis/transport measurements, we demonstrate that the pstA1-1 mutant is defective in PtdSer transport between the MAM and mitochondria. The gene that complements the growth defect and PtdSer transport defect of the pstA1-1 mutant is MET30, which encodes a substrate recognition subunit of the SCF (suppressor of kinetochore protein 1, cullin, F-box) ubiquitin ligase complex. Reconstitution of different permutations of MAM and mitochondria from wild type and pstA1-1 strains demonstrates that the MET30 gene product affects both organelles. These data provide compelling evidence that interorganelle PtdSer traffic is regulated by ubiquitination.  相似文献   

13.
Inter- and intramembrane phospholipid transport processes are central features of membrane biogenesis and homeostasis. Relatively recent successes in the molecular genetic analysis of aminoglycerophospholipid transport processes in both yeast and mammalian cells are now providing important new information defining specific protein and lipid components that participate in these reactions. Studies focused on phosphatidylserine (PtdSer) transport to the mitochondria reveal that the process is regulated by ubiquitination. In addition, a specific mutation disrupts PtdSer transport between mitochondrial membranes. Analysis of PtdSer transport from the endoplasmic reticulum to the locus of PtdSer decarboxylase 2 demonstrates the requirement for a phosphatidylinositol-4-kinase, a phosphatidylinositol-binding protein, and the C2 domain of the decarboxylase. Examination of NBD-phosphatidylcholine transport demonstrates the involvement of the prevacuolar compartment and a requirement for multiple genes involved in regulating vacuolar protein sorting for transport of the lipid to the vacuole. In intramembrane transport, multiple genes are now identified including those encoding multidrug resistant protein family members, DNF family members, ATP binding cassette transporters, and pleiotropic drug resistance family members. The scramblase family constitutes a collection of putative transmembrane transporters that function in an ATP-independent manner. The genetic analysis of lipid traffic is uncovering new molecules involved in all aspects of the regulation and execution of the transport steps and also providing essential tools to critically test the involvement of numerous candidate molecules.  相似文献   

14.
Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non‐vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport‐dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p‐specific transport pathway is one in which the enzyme and its non‐catalytic N‐terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes.   相似文献   

15.
Externalization of phosphatidylserine (PtdSer) is a common feature of programmed cell death and plays an important role in the recognition and removal of apoptotic cells. In this study with U937 cells, PtdSer synthesis from [(3)H]serine was stimulated and newly synthesized PtdSer was transferred preferentially to cell-free medium vesicles (CFMV) from cells when apoptosis was induced with a topoisomerase I inhibitor, camptothecin (CAM). When CAM-induced apoptosis was blocked by a caspase inhibitor, z-VAD-fmk, stimulation of PtdSer synthesis and movement to CFMV were abolished. In contrast, changes in synthesis and transport of sphingomyelin (SM) or phosphatidylethanolamine (PtdEtn) were minor; total phosphatidylcholine (PtdCho) synthesis was below control levels. All phospholipids appeared in CFMV but PtdSer displayed a 6-fold increase relative to controls compared to 3-fold for SM, 2-fold for PtdCho and 1.8-fold for PtdEtn. Even greater effects on specificity of PtdSer synthesis, movement to CFMV and inhibition by z-VAD-fmk were observed in apoptotic cells induced by UV irradiation or tumor necrosis factor-alpha/cycloheximide treatment. Thus, PtdSer biosynthesis stimulated during apoptosis in U937 cells was specific for this phospholipid and was correlated with caspase-mediated exposure of PtdSer at the cell surface and preferential movement to vesicles during apoptosis.  相似文献   

16.
The action of adriamycin (an inhibitor of precursor protein import into mitochondria) upon phosphatidylserine (PtdSer) import into mitochondria was examined in permeabilized CHO-K1 cells. The decarboxylation of nascent PtdSer to phosphatidylethanolamine was used as an indicator reaction for the lipid translocation process. Adriamycin was without effect upon new PtdSer synthesis but blocked the time- and translocation-dependent decarboxylation of this lipid at the mitochondrial inner membrane of permeabilized cells. The effect of adriamycin was concentration-dependent with an IC50 of 150 microM and was not due to direct inhibition of PtdSer decarboxylase. To determine at which level of PtdSer transport adriamycin was working, the adriamycin-treated permeabilized cells were incubated with 1-acyl-2-[N-(6-[(7-nitrobenz-2-oxa-1,3-diazo-4-yl)] aminocaproyl)]phosphatidyl[1'-14C] serine (NBD-Ptd[1'-14C]Ser), and its decarboxylation was determined. Since the NBD-Ptd[1'-14C]Ser freely partitions into all cell membranes, it can partition into the outer mitochondrial membrane in an ATP-independent fashion. The NBD-Ptd[1'-14C]Ser was readily decarboxylated in an ATP-independent manner in permeabilized cells. Adriamycin inhibited the decarboxylation of NBD-Ptd[1'-14C]Ser, thereby indicating that it can act upon lipid transport processes between the outer and inner mitochondrial membrane.  相似文献   

17.
Toxoplasma gondii is a highly prevalent obligate intracellular parasite of the phylum Apicomplexa, which also includes other parasites of clinical and/or veterinary importance, such as Plasmodium, Cryptosporidium, and Eimeria. Acute infection by Toxoplasma is hallmarked by rapid proliferation in its host cells and requires a significant synthesis of parasite membranes. Phosphatidylethanolamine (PtdEtn) is the second major phospholipid class in T. gondii. Here, we reveal that PtdEtn is produced in the parasite mitochondrion and parasitophorous vacuole by decarboxylation of phosphatidylserine (PtdSer) and in the endoplasmic reticulum by fusion of CDP-ethanolamine and diacylglycerol. PtdEtn in the mitochondrion is synthesized by a phosphatidylserine decarboxylase (TgPSD1mt) of the type I class. TgPSD1mt harbors a targeting peptide at its N terminus that is required for the mitochondrial localization but not for the catalytic activity. Ablation of TgPSD1mt expression caused up to 45% growth impairment in the parasite mutant. The PtdEtn content of the mutant was unaffected, however, suggesting the presence of compensatory mechanisms. Indeed, metabolic labeling revealed an increased usage of ethanolamine for PtdEtn synthesis by the mutant. Likewise, depletion of nutrients exacerbated the growth defect (∼56%), which was partially restored by ethanolamine. Besides, the survival and residual growth of the TgPSD1mt mutant in the nutrient-depleted medium also indicated additional routes of PtdEtn biogenesis, such as acquisition of host-derived lipid. Collectively, the work demonstrates a metabolic cooperativity between the parasite organelles, which ensures a sustained lipid synthesis, survival and growth of T. gondii in varying nutritional milieus.  相似文献   

18.
Metabolism and functions of phosphatidylserine   总被引:1,自引:0,他引:1  
Phosphatidylserine (PS) is a quantitatively minor membrane phospholipid that is synthesized by prokaryotic and eukaryotic cells. In this review we focus on genes and enzymes that are involved in PS biosynthesis in bacteria, yeast, plants and mammalian cells and discuss the available information on the regulation of PS biosynthesis in these organisms. The enzymes that synthesize PS are restricted to endoplasmic reticulum membranes in yeast and mammalian cells, yet PS is widely distributed throughout other organelle membranes. Thus, mechanisms of inter-organelle movement of PS, particularly the transport of PS from its site of synthesis to the site of PS decarboxylation in mitochondria, are considered. PS is normally asymmetrically distributed across the membrane bilayer, thus the mechanisms of transbilayer translocation of PS, particularly across the plasma membrane, are also discussed. The exposure of PS on the outside surface of cells is widely believed to play a key role in the removal of apoptotic cells and in initiation of the blood clotting cascade. PS is also the precursor of phosphatidylethanolamine that is made by PS decarboxylase in bacteria, yeast and mammalian cells. Furthermore, PS is required as a cofactor for several important enzymes, such as protein kinase C and Raf-1 kinase, that are involved in signaling pathways.  相似文献   

19.
Brefeldin A, a fungal metabolite which interrupts trafficking of proteins via the Golgi by causing disassembly of the Golgi stacks, has been used to investigate the mechanism of movement of phosphatidylethanolamine (PtdEtn) from its sites of synthesis to the cell surface. PtdEtn is made in hepatocytes by two major pathways, (a) from CDP-ethanolamine on the endoplasmic reticulum and (b) by decarboxylation of phosphatidylserine in mitochondria. Monolayer cultures of rat hepatocytes were incubated with radiolabeled precursors of PtdEtn ([3H]ethanolamine or [3H]serine) in the presence or absence of brefeldin A. The movement of newly made PtdEtn to the plasma membrane was studied by treatment of intact cells with trinitrobenzene sulfonate which reacted only with PtdEtn on the outside surface of the cells to produce N-trinitrophenyl-PtdEtn; PtdEtn in intracellular membranes remained underivatized by this reagent. Using this method, the incorporation of radioactivity into cell surface and intracellular PtdEtn could be differentiated. The studies showed that PtdEtn made by the two different biosynthetic routes was rapidly transported to the outside leaflet of the plasma membrane. However, the kinetics and the extent of labeling of the cell surface PtdEtn, relative to that of the intracellular PtdEtn pool, were different from each labeled precursor. The incorporation of [3H]ethanolamine into PtdEtn on the cell surface gradually increased to a constant level of 1.8% of the label of intracellular PtdEtn after 3 h. In contrast, after 0.5-1 h, cell surface PtdEtn labeled from [3H]serine comprised 4% of the intracellular PtdEtn pool; the extent of labeling gradually declined to a constant level of approximately 2.4% by 3 h. Brefeldin A did not interrupt the movement of PtdEtn, derived from either biosynthetic origin, to the cell surface even though protein secretion was greatly reduced. Thus, apparently PtdEtn and proteins are independently transported to the cell surface of hepatocytes.  相似文献   

20.
Phosphatidylserine (PtdSer) in mammalian cells is synthesized through the action of PtdSer synthase (PSS) 1 and 2, which catalyze the conversion of phosphatidylcholine and phosphatidylethanolamine, respectively, to PtdSer. The PtdSer synthesis in intact cells and an isolated membrane fraction is inhibited by exogenous PtdSer, indicating that inhibition of PtdSer synthases by PtdSer is important for the regulation of PtdSer biosynthesis. In this study, to examine whether the inhibition occurs through the direct interaction of PtdSer with the synthases or is mediated by unidentified factor(s), we purified a FLAG and HA peptide-tagged form of Chinese hamster PSS 2 to near homogeneity. The purified enzyme, as well as the crude enzyme in a membrane fraction, was inhibited on the addition of PtdSer to the enzyme assay mixture. In contrast to PtdSer, phosphatidylcholine and phosphatidylethanolamine did not significantly inhibit the purified enzyme. Furthermore, PtdSer-resistant PtdSer synthesis was observed on cell-free assaying of the membrane fraction prepared from a Chinese hamster ovary cell strain whose PtdSer synthesis in vivo is not inhibited by exogenous PtdSer. These results suggested that the interaction of PtdSer with PSS 2 or a very minor protein co-purified with PSS 2 was critical for the regulation of PSS 2 activity in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号