首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, ‘Samantha’, whose opening process is promoted, and ‘Kardinal’, whose opening process is inhibited by ethylene. Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in ‘Samantha’, and they were much more dramatically enhanced and peaked at the later stage (stage 4) in ‘Kardinal’ than control during vasing. cDNA fragments of three Rh-ACSs and one Rh-ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-induced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in ‘Kardinal’ than that of ‘Samantha’. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhibited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in ‘Kardinal’. Our results suggests that ‘Kardinal’ is more sensitive to ethylene than ‘Samantha’; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in ‘Samantha’ and the inhibition in ‘Kardinal’. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding.  相似文献   

2.
The study of gene function in roses is hampered by the low efficiency of transformation systems and the long time span needed for the generation of transgenic plants. For some functional analyses, the transient expression of genes would be an efficient alternative. Based on current protocols for the transient expression of genes via the infiltration of Agrobacterium into plant tissues, we developed a transient expression system for rose petals. We used β-glucuronidase (GUS) as a marker gene to optimize several parameters with effects on GUS expression. The efficiency of expression was found to be dependent on the rose genotype, flower age, position of petals within a flower, Agrobacterium strain and temperature of co-cultivation. The highest GUS expression was recorded in petals of the middle whirls of half-bloomed flowers from cultivars of ‘Pariser Charme’ and ‘Marvel’.  相似文献   

3.
To elucidate the role of the plant hormones—abscisic acid (ABA) and ethylene during flower senescence in roses, experiments were conducted on two cultivars of cut-roses (Rosa hybrida L.), ‘Grandgala’ and ‘First Red,’ obtained from a commercial grower. An apparent similarity was observed during flower senescence and accumulation of endogenous ABA in petal tissue. Several fold increase in ABA concentration was observed during the later stages of senescence which was found to be associated with a drastic reduction of flower water potential and water uptake. During the later stages of senescence (S5–S6) higher ABA concentration coincides with the elevated concentration of ethylene production. ABA and ethylene both stimulate senescence and are suggested to interact during flower senescence under water limitations.  相似文献   

4.
Petal growth associated with flower opening depends on cell expansion. To understand the role of soluble carbohydrates in petal cell expansion during flower opening, changes in soluble carbohydrate concentrations in vacuole, cytoplasm and apoplast of petal cells during flower opening in rose (Rosa hybrida L.) were investigated. We determined the subcellular distribution of soluble carbohydrates by combining nonaqueous fractionation method and infiltration–centrifugation method. During petal growth, fructose and glucose rapidly accumulated in the vacuole, reaching a maximum when petals almost reflected. Transmission electron microscopy showed that the volume of vacuole and air space drastically increased with petal growth. Carbohydrate concentration was calculated for each compartment of the petal cells and in petals that almost reflected, glucose and fructose concentrations increased to higher than 100 mM in the vacuole. Osmotic pressure increased in apoplast and symplast during flower opening, and this increase was mainly attributed to increases in fructose and glucose concentrations. No large difference in osmotic pressure due to soluble carbohydrates was observed between the apoplast and symplast before flower opening, but total osmotic pressure was much higher in the symplast than in the apoplast, a difference that was partially attributed to inorganic ions. An increase in osmotic pressure due to the continued accumulation of glucose and fructose in the symplast may facilitate water influx into cells, contributing to cell expansion associated with flower opening under conditions where osmotic pressure is higher in the symplast than in the apoplast.  相似文献   

5.
6.
Summary Anthers and ovaries of six grapevine cultivars (three Vitis vinifera L., two V × Labruscana L. H. Bailey, and one complex hybrid) were extracted from flower buds over 2 yr and cultured on three media reported to promote somatic embryogenesis in Vitis tissues. The highest percent embryogenesis from the hybrid ‘Chancellor’ and V. vinifera ‘Chardonnay’, ‘Merlot’, and ‘Pinot Noir’ occurred on medium C [Nitsch and Nitsch, 1969, basal medium with 3.0% (w/v) sucrose, 0.01% (w/v) inositol. 0.3% (w/v) Phytagel, 2.5 μM 2.4-dichlorophenoxyacetic acid, 2.5μM β-naphthoxyacetic acid, 5.0μM N-(2-chloro-4-pyridyl)-N′-phenylurea, and 0.05% (w/v) glutamine]. Regardless of the media, the labrusca cultivars ‘Concord’ and ‘Niagara’ produced soft non-embryogenic callus that was sometimes mixed with well-developed somatic embryos. Nine vinifera genotypes were further tested for several different years on medium C. Embryogenic cultures suitable for transformation were obtained from all genotypes in more than 1 yr. The average percent embryogenesis from ovaries was 7-fold higher than from anthers. There was significant annual variation in percent embryogenesis, demonstrating the need for media comparisons to be replicated for more than one season. Suspension cultures suitable for use in genetic transformation were initiated from ‘Chardonnay’, ‘Merlot,’ and ‘Pinot Noir’ pro-embryogenic masses. ‘Chardonnay’ suspension cultures plated and grown under conditions developed for recovery of plants after biolistic transformation yielded approximately 500 non-transformed embryos per plate after 4 mo. of culture, with 68.6% of the embryos converting to plants. This is the first reported protocol for embryogenesis from ‘Concord,’ ‘Cabernet Franc,’ and ‘Pinot Noir’ grapevines.  相似文献   

7.
Phalaenopsis frequently exhibits bud drop during production and in response to adverse postharvest conditions. The effect of exogenous ethylene on bud drop of mini Phalaenopsis was studied and ethylene sensitivity of four cultivars was compared. Water content, membrane permeability and ABA (abscisic acid) content in floral buds and flowers were determined after ethylene treatment. Exogenous ethylene induced flower bud drop in all tested Phalaenopsis cultivars and the different cultivars showed distinct differences in ethylene sensitivity. The cultivar Sogo ‘Vivien’ exhibited the highest bud drop, water loss and change in membrane permeability in floral petals, while Sogo ‘Berry’ showed the lowest sensitivity. The ethylene inhibitor 1-MCP (1-methylcyclopropene) reduced ethylene-induced floral bud drop in the cultivar Sogo ‘Yenlin’. ABA content in floral buds was increased in response to ethylene and 1-MCP pretreatment inhibited the ethylene-induced increase in ABA levels efficiently. This finding suggests that the observed increase in ABA content during bud drop was mediated by ethylene. The interaction between ABA and ethylene is discussed.  相似文献   

8.
9.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

10.
11.
To establish a model system for alteration of flower color by carotenoid pigments, we modified the carotenoid biosynthesis pathway of Lotus japonicus using overexpression of the crtW gene isolated from marine bacteria Agrobacterium aurantiacum and encoding β-carotene ketolase (4,4′-β-oxygenase) for the production of pink to red color ketocarotenoids. The crtW gene with the transit peptide sequence of the pea Rubisco small subunit under the regulation of the CaMV35S promoter was introduced to L. japonicus. In most of the resulting transgenic plants, the color of flower petals changed from original light yellow to deep yellow or orange while otherwise exhibiting normal phenotype. HPLC and TLC analyses revealed that leaves and flower petals of these plants accumulated novel carotenoids, believed to be ketocarotenoids consisting of including astaxanthin, adonixanthin, canthaxanthin and echinenone. Results indicated that modification of the carotenoid biosynthesis pathway is a means of altering flower color in ornamental crops.  相似文献   

12.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

13.
Leaf yellowing is a major problem in Alstroemeria and absence of leaf senescence symptoms is an important quality attribute. Two Alstroemeria cultivars ‘Yellow King’ and ‘Marina’ were sourced from a commercial farm and harvested when sepals began to reflex. Stems were re-cut under water and kept in vase solutions of gibberellin A4+7 (0, 2.5, 5.0, 7.5, 10.0, 12.5 or 15.0 mg l−1 [Provider]). Treatments and cultivars were combined in a factorial fashion and arranged in a completely randomised design. Application of GA4+7 in the holding solution at 2.5–10.0 mg l−1 significantly delayed the onset of leaf senescence by around 7 days and significantly increased days to 50% petal fall by ca. 2 days. Additionally, these GA4+7 concentrations resulted in higher retention of leaf nitrogen, leaf chlorophyll and also increased leaf water content, while reducing leaf dry weight, all relative to untreated controls. Cultivar ‘Yellow King’ had significantly longer vase life and a better retention of leaf quality than ‘Marina’. Our results suggest that a concentration of 10 mg l−1 GA4+7 can be used to prolong vase life, delay leaf senescence and enhance post-harvest quality of Alstroemeria cut flowers during their transport to market.  相似文献   

14.
‘SI1300’ is a self-incompatible Brassica napus line generated by introgressing an S haplotype from B. rapa ‘Xishuibai’ into a rapeseed cultivar ‘Huayou No. 1’. Five S-locus specific primer pairs were employed to develop cleaved amplified polymorphic sequences (CAPS) markers linked the S haplotype of ‘SI1300’. Two segregating populations (F2 and BC1) from the cross between ‘SI1300’ and self-compatible European spring cultivar ‘Defender’, were generated to verify the molecular markers. CAPS analysis revealed no desirable polymorphism between self-incompatible and self-compatible plants. Twenty primer pairs were designed based on the homology-based candidate gene method, and six dominant sequence characterized amplified region (SCAR) markers linked with the S-locus were developed. Of the six markers, three were derived from the SRK and SP11 alleles of class II B. rapa S haplotypes and linked with S haplotype of ‘SI1300’. The other three markers were designed from the SLG-A10 and co-segregated with S haplotype of ‘Defender’. We successfully combined two pairs of them and characterized two multiplex PCR markers which could discriminate the homozygous and heterozygous genotypes. These markers were further validated in 24 F3 and 22 BC1F2 lines of ‘SI1300 × Defender’ and another two segregating populations from the cross ‘SI1300 × Yu No. 9’. Nucleotide sequences of fragments linked with S-locus of ‘SI1300’ showed 99% identity to B. rapa class II S-60 haplotype, and fragments from ‘Defender’ were 97% and 94% identical to SLG and SRK of B. rapa class I S-47 haplotype, respectively. ‘SI1300’ was considered to carry two class II S haplotypes and the S haplotype on the A-genome derived from B. rapa ‘Xishuibai’ determines the SI phenotype, while ‘Defender’ carry a class I S haplotype derived from B. rapa and a class II S haplotype from B. oleracea. SCAR markers developed in this study will be helpful for improving SI lines and accelerating marker-assisted selection process in rapeseed SI hybrid breeding program.  相似文献   

15.
Yamada T  Ichimura K  van Doorn WG 《Planta》2007,226(5):1195-1205
Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD. We studied some parameters that indicate PCD: chromatin condensation, a decrease in nuclear diameter, DNA fragmentation, and DNA content per nucleus, using Prunus yedoensis and Delphinium belladonna which both show abscission of turgid petals at the end of floral life. No DNA degradation, no chromatin condensation, and no change in nuclear volume was observed in P. yedoensis petals, prior to abscission. In abscising D. belladonna petals, in contrast, considerable DNA degradation was found, chromatin was condensed and the nuclear volume considerably reduced. Following abscission, the nuclear area in both species drastically increased, and the chromatin became unevenly distributed. Similar chromatin changes were observed after dehydration (24 h at 60°C) of petals severed at the time of flower opening, and in dehydrated petals of Ipomoea nil and Petunia hybrida, severed at the time of flower opening. In these flowers the petal life span is terminated by wilting rather than abscission. It is concluded that the abscission of turgid petals in D. belladonna was preceded by a number of PCD indicators, whereas no such evidence for PCD was found at the time of P. yedoensis petal abscission. Dehydration of the petal cells, after abscission, was associated with a remarkable nuclear morphology which was also found in younger petals subjected to dehydration. This nuclear morphology has apparently not been described previously, for any organism.  相似文献   

16.
Rapid progress in studies on flower development has resulted in refining the classical ‘ABC model’ into a new ‘ABCDE model’ to explain properly the regulation of floral organ identity. Conservation of E-function for flower organ identity among the dicotyledonous (dicot) plants has been revealed. However, its conservation in monocotyledonous (monocot) plants remains largely unknown. Here, we show the conservation of E-function in rice (Oryza sativaL.) by characterizing tissue culture-induced mutants of two MADS-box genes, OsMADS1and OsMADS5, which form a subclade within the well-supported clade of SEP-genes (E-function) phylogeny. Severe loss-of-function mutations of OsMADS1cause complete homeotic conversion of organs (lodicules, stamens, and carpels) of three inner whorls into lemma- and palea-like structures. Such basic deformed structure is reiterated along with the pedicel at the center of the same floret, indicating the loss of determinacy of the flower meristem. These phenotypes resemble the phenotypes caused by mutations of the dicot E-class genes, such as the Arabidopsis SEP123(SEPALLATA1/2/3) and the petunia FBP2(Floral Binding Protein 2), suggesting that OsMADS1play a very similar role in rice to that of defined E-class genes in dicot plants. In case of the loss-of-function mutation of OsMADS5, no defect in either panicles or vegetative organs was observed. These results demonstrate that OsMADS1clearly possesses E-function, and so, E-function is fundamentally conserved between dicot plants and rice, a monocot model plant.  相似文献   

17.
Plant s-phase kinase-associated protein 1 (SKP1) genes have diverse functions in plant developmental and physiological activities. Herein, we described a novel SKP1 gene, designated as CgSKP1, from ‘Shatian’ pummelo (Citrus grandis Osbeck). The cDNA sequence of CgSKP1 was 603 bp and contained an open reading frame of 477 bp. Genomic sequence of the CgSKP1 gene contained two exons and one intron. The predicted amino acid sequence of this gene is consisted of 158 amino acids with theoretical proteins size of 17.9 kDa. CgSKP1 had high identity with SKP1 genes from other plant species within two conserved region. Full-length cDNAs were also amplified and cloned from six citrus varieties, with 95% nucleotide identity and about 98% amino acid similarity among them. Gel blot analysis suggested that CgSKP1 existed as a single locus in the ‘Shatian’ pummelo genome. The expression of CgSKP1 was gradually increased during flower developmental stages in ‘Shatian’ pummelo. Moreover, expression analysis by RT-PCR, qRT-PCR and in situ hybridization of CgSKP1 showed that it was highly expressed in the leaf, petal, anther and ovary, but lowly in the style. These findings indicated that CgSKP1 was closely related to ‘Shatian’ pummelo flower development.  相似文献   

18.
The objective of this study was to examine whether S-RNase plays a specific role in the pre-germinated Pyrus pollen. Effects of exogenous RNase and endogenous S-RNase on concentration of cytosolic-free calcium ([Ca2+]i) variation of pre-germinated Pyrus pollen were studied. [Ca2+]i variation caused by different RNases were complex. In 1 h after being cultured, exogenous RNase, RNase T1 and RNase A, and endogenous incompatible ‘Hohsui’ RNase promoted the [Ca2+]i of ‘Hohsui’ pollen. Acid proteins of ‘Hohsui’ had no remarkable influence on the [Ca2+]i of self-pollen. Endogenous compatible ‘Kohsui’ RNase reduced the [Ca2+]i of ‘Hohsui’ pollen, but compatible ‘Hohsui’ RNase can stimulate the [Ca2+]i of ‘Kohsui’ pollen. RNase T1, RNase A and incompatible ‘Kohsui’ S-RNase can also make ‘Kohsui’ pollen [Ca2+]i increase. Different from ‘Hohsui’ pollen, acid proteins of ‘Hohsui’ pull down the ‘Kohsui’ pollen [Ca2+]i remarkably. Conclusion can be made that during the prophase of pollen germination, endogenous S-RNase has no specific effect on pollen [Ca2+]i changes.  相似文献   

19.
Temperature‐dependent tulip petal opening and closing movement was previously suggested to be regulated by reversible phosphorylation of a plasma membrane aquaporin ( Azad et al., 2004a ). Stomatal apertures of petals were investigated during petal opening at 20°C and closing at 5°C. In completely open petals, the proportion of open stomata in outer and inner surfaces of the same petal was 27 ± 6% and 65 ± 3%, respectively. During the course of petal closing, stomatal apertures in both surfaces reversed, and in completely closed petals, the proportion of open stomata in outer and inner surfaces of the same petal was 74 ± 3% and 29 ± 6%, respectively, indicating an inverse relationship between stomatal aperture in outer and inner surfaces of the petal during petal opening and closing. Both petal opening and stomatal closure in the outer surface of the petal was inhibited by a Ca2+ channel blocker and a Ca2+ chelator, whereas the inner surface stomata remained unaffected. On the other hand, sodium nitroprusside, a nitric oxide donor, had no effect on stomatal aperture of the outer surface but influenced the inner surface stomatal aperture during petal opening and closing, suggesting different signalling pathways for regulation of temperature‐dependent stomatal changes in the two surfaces of tulip petals. Stomata were found to be differentially distributed in the bottom, middle and upper parts of tulip petals. During petal closing, water transpiration was observed by measuring the loss of 3H2O. Transpiration of 3H2O by petals was fivefold greater in the first 10 min than that found after 30 min, and the transpiration rate was shown to be associated with stomatal distribution and aperture. Thus, the stomata of outer and inner surfaces of the petal are involved in the accumulation and transpiration of water during petal opening.  相似文献   

20.
Self-compatibility has become the primary objective of most almond (Prunus amygdalus Batsch) breeding programmes in order to avoid the problems related to the gametophytic self-incompatibility system present in almond. The progeny of the cross ‘Vivot’ (S 23 S fa) × ‘Blanquerna’ (S 8 S fi) was studied because both cultivars share the same S f allele but have a different phenotypic expression: active (S fa) in ‘Vivot’ and inactive (S fi) in ‘Blanquerna’. In addition, the microscopic observation of pollen tube growth after self-pollination over several years showed an unexpected self-incompatible behaviour in most seedlings of this cross. The genotypes of this progeny showed that the S fi pollen from ‘Blanquerna’ was not able to grow down the pistils of ‘Vivot’ harbouring the S fa allele, confirming the active function of this allele against the inactive form of the same allele, S fi. As self-compatibility was observed in some S 8 S 23 and S 8 S fa individuals of this progeny, the S f haplotype may not always be linked to the expression and transmission of self-compatibility in almond, suggesting that a modifier locus may be involved in the mechanism of self-incompatibility in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号