首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distribution of alpha 1-antitrypsin variants in a US white population   总被引:3,自引:0,他引:3  
A white population from the State of Minnesota of primarily German and Scandinavian heritage was subtyped for alpha 1-antitrypsin variants using isoelectric focusing. The frequencies of the genes PI*M1 (0.724), PI*M2 (0.137) and PI*M3 (0.095) were consistent with those for white populations documented in the literature from Northern Europe. Other genes identified in the study were PI*F, PI*I, PI*P, PI*S and PI*Z.  相似文献   

2.
Twelve equine protease inhibitory alleles, PiE, H, J, K, L2, O, P, Q, R, V, X, Z, have been characterized in terms of isoelectric point, molecular mass and inhibitory activity to bovine trypsin and chymotrypsin by ISO-DALT electrophoresis. Protein maps for 20 Pi alleles including those of the eight 'Thoroughbred' alleles (PiF, G, I, L, N, S1, S2, U) have now been determined. Five pairs of alleles, S1/S2, G/K, L/L2, P/R and U/Z, possessed varying numbers of common proteins ranging from one protein in the case of G/K and L/L2 to six in the case of U/Z. Based on these results and studies of the abnormal expressions of PiF, PiL and PiS1, a theory of at least three closely linked loci has been postulated to account for the marked heterogeneity of the equine protease inhibitory system.  相似文献   

3.
The development of resistance to anti-retroviral drugs targeted against HIV is an increasing clinical problem in the treatment of HIV-1-infected individuals. Many patients develop drug-resistant strains of the virus after treatment with inhibitor cocktails (HAART therapy), which include multiple protease inhibitors. Therefore, it is imperative that we understand the mechanisms by which the viral proteins, in particular HIV-1 protease, develop resistance. We have determined the three-dimensional structure of HIV-1 protease NL4-3 in complex with the potent protease inhibitor TL-3 at 2.0 A resolution. We have also obtained the crystal structures of three mutant forms of NL4-3 protease containing one (V82A), three (V82A, M46I, F53L) and six (V82A, M46I, F53L, V77I, L24I, L63P) point mutations in complex with TL-3. The three protease mutants arose sequentially under ex vivo selective pressure in the presence of TL-3, and exhibit fourfold, 11-fold, and 30-fold resistance to TL-3, respectively. This series of protease crystal structures offers insights into the biochemical and structural mechanisms by which the enzyme can overcome inhibition by TL-3 while recovering some of its native catalytic activity.  相似文献   

4.
An isoelectric focusing (IEF) procedure in an ultra-narrow pH range, 4.2-4.9, has been utilized to detect alpha 1-antitrypsin or alpha 1-protease inhibitor (PI) allele products in 2 US white and 3 US black populations as well as 1 native African black population. In addition to the 3 common alleles PI*M1, PI*M2 and PI*M3, products of the 4th allele PI*M4 have been identified in US whites at low-level frequency. The presence of the PI*S, PI*Z and PI*I alleles has also been verified in our population samples. While the PI*S allele is present at a polymorphic level in US whites, it is only present sporadically in US blacks and is completely absent in African blacks. The PI*Z allele was not detected in the black populations tested. The PI allele frequency data have been used to calculate white admixture in US blacks.  相似文献   

5.
Although a majority of HIV-1 infections in Brazil are caused by the subtype B virus (also prevalent in the United States and Western Europe), viral subtypes F and C are also found very frequently. Genomic differences between the subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. The current anti-HIV drugs have been developed primarily against subtype B and the effects arising from the combination of drug-resistance mutations with the naturally existing polymorphisms in non-B HIV-1 subtypes are only beginning to be elucidated. To gain more insights into the structure and function of different variants of HIV proteases, we have determined a 2.1 A structure of the native subtype F HIV-1 protease (PR) in complex with the protease inhibitor TL-3. We have also solved crystal structures of two multi-drug resistant mutant HIV PRs in complex with TL-3, from subtype B (Bmut) carrying the primary mutations V82A and L90M, and from subtype F (Fmut) carrying the primary mutation V82A plus the secondary mutation M36I, at 1.75 A and 2.8 A resolution, respectively. The proteases Bmut, Fwt and Fmut exhibit sevenfold, threefold, and 54-fold resistance to TL-3, respectively. In addition, the structure of subtype B wild type HIV-PR in complex with TL-3 has been redetermined in space group P6(1), consistent with the other three structures. Our results show that the primary mutation V82A causes the known effect of collapsing the S1/S1' pockets that ultimately lead to the reduced inhibitory effect of TL-3. Our results further indicate that two naturally occurring polymorphic substitutions in subtype F and other non-B HIV proteases, M36I and L89M, may lead to early development of drug resistance in patients infected with non-B HIV subtypes.  相似文献   

6.
7.
A detailed biochemical characterization of four of the five previously described alleles of the plasma protease inhibitor (Pi) system of Equus przewalskii was performed using both one- and two-dimensional electrophoretic techniques. The proteins have been characterized in terms of isoelectric point, relative molecular mass, inhibitory activity to bovine trypsin and chymotrypsin, immunochemical cross-reactivity, terminal sialic acid content and enzyme:inhibitor complex formation and the oxidation sensitivity of this interaction. Using these functional criteria, only three loci (Spi 1, 2 and 3) were found to control the plasma Pi proteins of the E. przewalskii haplotypes. In contrast a fourth locus, Spi 4, was found in some E. caballus haplotypes. The significance of these results with respect to the complexity of the protein pattern exhibited by the equine Pi multigene family is discussed.  相似文献   

8.
Proteases are industrially important enzymes but often have to be improved for their catalytic efficiency and stabilities to suit applications. Flow cytometry screening technology based on in vitro compartmentalization in double emulsion had been developed and applied on directed evolution of paraoxonase and β-galactosidase. Further advancements of flow cytometry-based screening technologies will enable an ultra-high throughput of variants offering novel opportunities in directed enzyme evolution under high mutational loads. For the industrially important enzyme class of proteases, a first flow cytometry-based screening system for directed protease evolution has been developed based on an extracellular protease-deficient Bacillus subtilis strain (WB800N), a model protease (subtilisin Carlsberg), and a water-in-oil-in-water double-emulsion technology. B. subtilis WB800N cells are encapsulated in double emulsion with a fluorogenic substrate (rhodamine 110-containing peptide), allowing the screening of protease variants in femtoliter compartments at high throughput. The protease screening technology was validated by employing an epPCR mutant library with a high mutational load and screened for increased resistance toward the inhibitor antipain dihydrochloride. A variant (K127R, T237P, M239I, I269V, Y310F, I372V) with an improved relative resistance was isolated from a small population of active variants, validating the reported protease flow cytometry screening technology for increased inhibitor resistance.  相似文献   

9.
The plasma protease inhibitor system (Pi) of Standardbred horses   总被引:1,自引:0,他引:1  
The plasma protease inhibitor system (Pi) of Standardbred horses was studied by thin-layer, high-voltage, acid polyacrylamide gel electrophoresis (pH 4.6) followed by protein staining and staining for trypsin and chymotrypsin inhibition. In addition to the eight Thoroughbred alleles (PiF, G, I, L, N, S1, S2, U), another 10 alleles, designated PiH, J, K, O, P, Q, R, V, X, Z, were postulated to account for the 98 Pi types which were observed in Standardbreds. Detailed inhibitory spectra of the 'new' alleles were determined and further exceptions to the Pi1, Pi2 classification of Juneja et al. (1979) were found. Limited family data demonstrated the genetic nature of the 'new' variants and confirmed the allelic inheritance of the 'new' Pi variants.  相似文献   

10.
Three cases of abnormal expression of the equine protease inhibitory alleles, Pi F, L, and S1, were observed following the examination of 30,000 plasma samples by one-dimensional acid (pH 4.6) polyacrylamide gel electrophoresis. Characterization of the abnormal proteins in terms of isoelectric point, molecular mass, inhibitory spectra, and sialic acid content was performed using one- and two-dimensional electrophoretic techniques. The Pi F and S1 abnormalities were postulated to be the result of amino acid substitutions causing alterations in the processing of the carbohydrate side chains. No explanation could be offered for the Pi L abnormality other than a charge shift mutation. Abnormal types, F*, L*, and S*1 behaved as alleles but the distribution of L* in offspring from one stallion (present in only 6 of 83 offspring) differed significantly from expectation.This work was supported by a grant from the Australian Stud Book, Alison Road, Randwick, N.S.W. 2031.  相似文献   

11.
应用等电聚焦-免疫印迹法调查了广东省四个民族(汉、苗、黎和回族)C6遗传多态性。广州地区汉族C6等位基因频率分别为:C6*A0.4225,C6*B0.5288,C6*B2 0.0387和C6*R(M91,M92,M11,B21)0.0100。海南岛三个少数民族C6遗传特点与广州汉族相似,均处于Hardy-Weinberg平衡状态。共发现五个罕见基因的杂合子,其中三个等位基因为首次报道。  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) Gag protease cleavage sites (CS) undergo sequence changes during the development of resistance to several protease inhibitors (PIs). We have analyzed the association of sequence variation at the p7/p1 and p1/p6 CS in conjunction with amprenavir (APV)-specific protease mutations following PI combination therapy with APV. Querying a central resistance data repository resulted in the detection of significant associations (P < 0.001) between the presence of APV protease signature mutations and Gag L449F (p1/p6 LP1'F) and P453L (p1/p6 PP5'L) CS changes. In population-based sequence analyses the I50V mutant was invariably linked to either L449F or P453L. Clonal analysis revealed that both CS mutations were never present in the same genome. Sequential plasma samples from one patient revealed a transition from I50V M46L P453L viruses at early time points to I50V M46I L449F viruses in later samples. Various combinations of the protease and Gag mutations were introduced into the HXB2 laboratory strain of HIV-1. In both single- and multiple-cycle assay systems and in the context of I50V, the L449F and P453L changes consistently increased the 50% inhibitory concentration of APV, while the CS changes alone had no measurable effect on inhibitor sensitivity. The decreased in vitro fitness of the I50V mutant was only partially improved by addition of either CS change (I50V M46I L449F mutant replicative capacity approximately 16% of that of wild-type virus). Western blot analysis of Pr55 Gag precursor cleavage products from infected-cell cultures indicated accumulation of uncleaved Gag p1-p6 in all I50V viruses without coexisting CS changes. Purified I50V protease catalyzed cleavage of decapeptides incorporating the L449F or P453L change 10-fold and 22-fold more efficiently than cleavage of the wild-type substrate, respectively. HIV-1 protease CS changes are selected during PI therapy and can have effects on both viral fitness and phenotypic resistance to PIs.  相似文献   

13.
HIV-1 develops resistance to protease inhibitors predominantly by selecting mutations in the protease gene. Studies of resistant mutants of HIV-1 protease with single amino acid substitutions have shown a range of independent effects on specificity, inhibition, and stability. Four double mutants, K45I/L90M, K45I/V82S, D30N/V82S, and N88D/L90M were selected for analysis on the basis of observations of increased or decreased stability or enzymatic activity for the respective single mutants. The double mutants were assayed for catalysis, inhibition, and stability. Crystal structures were analyzed for the double mutants at resolutions of 2.2-1.2 A to determine the associated molecular changes. Sequence-dependent changes in protease-inhibitor interactions were observed in the crystal structures. Mutations D30N, K45I, and V82S showed altered interactions with inhibitor residues at P2/P2', P3/P3'/P4/P4', and P1/P1', respectively. One of the conformations of Met90 in K45I/L90M has an unfavorably close contact with the carbonyl oxygen of Asp25, as observed previously in the L90M single mutant. The observed catalytic efficiency and inhibition for the double mutants depended on the specific substrate or inhibitor. In particular, large variation in cleavage of p6(pol)-PR substrate was observed, which is likely to result in defects in the maturation of the protease from the Gag-Pol precursor and hence viral replication. Three of the double mutants showed values for stability that were intermediate between the values observed for the respective single mutants. D30N/V82S mutant showed lower stability than either of the two individual mutations, which is possibly due to concerted changes in the central P2-P2' and S2-S2' sites. The complex effects of combining mutations are discussed.  相似文献   

14.
The protease inhibitory spectra of the eight homozygous Thoroughbred Pi types against trypsin, elastase and chymotrypsin have been determined. The alpha 1-protease inhibitor proteins exhibit three classes of inhibitory specificity towards these enzymes. The Pi types F, I, N and U exhibit class I (trypsin, elastase and chymotrypsin) and class II (trypsin and elastase) types of inhibition and fit Juneja et al.'s (1979) classification of two separate genetic systems Pi 1 and Pi 2 based on differences in the inhibitory spectra against trypsin and chymotrypsin. The remaining four Pi types are exceptions to Juneja et al.'s (1979) classification. Types G, L, S1 and S2 possess class I but not class II proteins. A third class of proteins (class III) which exclusively inhibit chymotrypsin was detected in all eight protease inhibitor types. Type G is well represented by class III proteins because two of the three major proteins of the ISO-DALT pattern inhibit only chymotrypsin and is thus an exception to Juneja et al.'s (1979) classification.  相似文献   

15.
The isoelectric points and the molecular weights of the major components of the eight Thoroughbred protease inhibitor (Pi) types have been determined by polyacrylamide gel isoelectric focusing and polyacrylamide gel pore gradient (ISO-DALT) electrophoresis respectively. The major Pi proteins focus in the range pH 3.74-4.43 and have molecular weights ranging from 55 000-72 000 daltons. Using the ISO-DALT method of electrophoresis, protein maps for the eight Thoroughbred Pi types have been presented for the first time. None of the homozygous Pi types are identical except for the types S1 and S2 which show partial identity. The results do not necessarily support Juneja et al.'s (1979) contention of two closely linked alpha 1 Pi systems based on molecular weight differences. It is suggested that the traditional nomenclature originally proposed by Braend (1970) be maintained to describe the eight Pi alleles in Thoroughbred horse plasma. The ISO-DALT method provides a sensitive technique which is superior to existing techniques for the analysis of the horse Pi system.  相似文献   

16.
TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.  相似文献   

17.
Vagin O  Denevich S  Munson K  Sachs G 《Biochemistry》2002,41(42):12755-12762
Inhibition of the gastric H,K-ATPase by the imidazo[1,2-alpha]pyridine, SCH28080, is strictly competitive with respect to K+ or its surrogate, NH4+. The inhibitory kinetics [V(max), K(m,app)(NH4+), K(i)(SCH28080), and competitive, mixed, or noncompetitive] of mutants can define the inhibitor binding domain and the route to the ion binding region within M4-6. While mutations Y799F, Y802F, I803L, S806N, V807I (M5), L811V (M5-6), Y928H (M8), and Q905N (M7-8) had no effect on inhibitor kinetics, mutations P798C, Y802L, P810A, P810G, C813A or -S, I814V or -F, F818C, T823V (M5, M5-6, and M6), E914Q, F917Y, G918E, T929L, and F932L (M7-8 and M8) reduced the affinity for SCH28080 up to 10-fold without affecting the nature of the kinetics. In contrast, the L809F substitution in the loop between M5 and M6 resulted in an approximately 100-fold decrease in inhibitor affinity, and substitutions L809V, I816L, Y925F, and M937V (M5-6, M6, and M8) reduced the inhibitor affinity by 10-fold, all resulting in noncompetitive kinetics. The mutants L811F, Y922I, and I940A also reduced the inhibitor affinity up to 10-fold but resulted in mixed inhibition. The mutations I819L, Q923V, and Y925A also gave mixed inhibition but without a change in inhibitor affinity. These data, and the 9-fold loss of SCH28080 affinity in the C813T mutant, suggest that the binding domain for SCH28080 contains the surface between L809 in the M5-6 loop and C813 at the luminal end of M6, approximately two helical turns down from the ion binding region, where it blocks the normal ion access pathway. On the basis of a model of the Ca-ATPase in the E2 conformation (PDB entry 1kju), the mutants that change the nature of the kinetics are arranged on one side of M8 and on the adjacent side of the M5-6 loop and M6 itself. This suggests that mutations in this region modify the enzyme structure so that K+ can access the ion binding domain even with SCH28080 bound.  相似文献   

18.
Human organic cation transporter 1 is primarily expressed in hepatocytes and mediates the electrogenic transport of various endogenous and exogenous compounds, including clinically important drugs. Genetic polymorphisms in the gene coding for human organic cation transporter 1, SLC22A1, are increasingly being recognized as a possible mechanism explaining the variable response to clinical drugs, which are substrates for this transporter. The genotypic and allelic distributions of 19 nonsynonymous and one intronic SLC22A1 single nucleotide polymorphisms were determined in 148 healthy Xhosa participants from South Africa, using a SNAPshot® multiplex assay. In addition, haplotype structure for SLC22A1 was inferred from the genotypic data. The minor allele frequencies for S14F (rs34447885), P341L (rs2282143), V519F (rs78899680), and the intronic variant rs622342 were 1.7%, 8.4%, 3.0%, and 21.6%, respectively. None of the participants carried the variant allele for R61C (rs12208357), C88R (rs55918055), S189L (rs34104736), G220V (rs36103319), P283L (rs4646277), R287G (rs4646278), G401S (rs34130495), M440I (rs35956182), or G465R (rs34059508). In addition, no variant alleles were observed for A306T (COSM164365), A413V (rs144322387), M420V (rs142448543), I421F (rs139512541), C436F (rs139512541), V501E (rs143175763), or I542V (rs137928512) in the population. Eight haplotypes were inferred from the genotypic data. This study reports important genetic data that could be useful for future pharmacogenetic studies of drug transporters in the indigenous Sub-Saharan African populations.  相似文献   

19.
Site-specific mutagenesis techniques have been used to construct active site variants of the Kunitz-type protease inhibitor domain present in the Alzheimer's beta-amyloid precursor protein (APP-KD). Striking alteration of its protease inhibitory properties were obtained when the putative P1 residue, arginine, was replaced with the small hydrophobic residue valine. The altered protein was no longer inhibitory toward bovine pancreatic trypsin, human Factor XIa, mouse epidermal growth factor-binding protein, or bovine chymotrypsin, all of which are strongly inhibited by the unaltered APP-KD (Sinha, S., Dovey, H. F., Seubert, P., Ward, P. J., Blacher, R. W., Blaber, M., Bradshaw, R. A., Arici, M., Mobley, W. C., and Lieberburg, I. (1990) J. Biol. Chem. 265, 8983-8985). Instead, the P1-Val-APP-KD was a potent inhibitor of human neutrophil elastase, with a Ki = 0.8 nM, as estimated by the inhibition of the activity of human neutrophil elastase measured using a chromogenic substrate. It also inhibited the degradation of insoluble elastin by the enzyme virtually stoichiometrically. Replacement of the P1' (Ala) and P2' (Met) residues of P1-Val-MKD with the corresponding residues (Ser, Ile) from alpha 1-proteinase inhibitor resulted in an inactive protein, underscoring the mechanistic differences between the serpins from the Kunitz-type protease inhibitor family. These results confirm the importance of the P1 arginine residue of APP-KD in determining inhibitory specificity, and are also the first time that a single amino acid replacement has been shown to generate a specific potent human neutrophil elastase inhibitor from a human KD sequence.  相似文献   

20.
This paper presents the complete amino acid sequence of the low molecular weight acid phosphatase from bovine liver. This isoenzyme of the acid phosphatase family is located in the cytosol, is not inhibited by L-(+)-tartrate and fluoride ions, but is inhibited by sulfhydryl reagents. The enzyme consists of 157 amino acid residues, has an acetylated NH2 terminus, and has arginine as the COOH-terminal residue. All 8 half-cystine residues are in the free thiol form. The molecular weight calculated from the sequence is 17,953. The sequence was determined by characterizing the peptides purified by reverse-phase high performance liquid chromatography from tryptic, thermolytic, peptic, Staphylococcus aureus protease, and chymotryptic digests of the carboxymethylated protein. No sequence homologies were found with the two known acylphosphatase isoenzymes or the metalloproteins porcine uteroferrin and purple acid phosphatase from bovine spleen (both of which have acid phosphatase activity). Two half-cystines at or near the active site were identified through the reaction of the enzyme with [14C] iodoacetate in the presence or in the absence of a competitive inhibitor (i.e. inorganic phosphate). Ac-A E Q V T K S V L F V C L G N I C R S P I A E A V F R K L V T D Q N I S D N W V I D S G A V S D W N V G R S P N P R A V S C L R N H G I N T A H K A R Q V T K E D F V T F D Y I L C M D E S N L R D L N R K S N Q V K N C R A K I E L L G S Y D P Q K Q L I I E D P Y Y G N D A D F E T V Y Q Q C V R C C R A F L E K V R-OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号