首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady-state kinetics of the oxidative decarboxylation of 6-phosphogluconate catalysed by 6-phosphogluconate dehydrogenase from sheep liver in triethanolamine and phosphate buffers (pH 7.0) have been reinvestigated. In triethanolamine buffer the enzyme is inhibited by high NADP+ concentrations in the presence of low fixed concentrations of 6-phosphogluconate. Data are consistent with an asymmetric sequential mechanism in which NADP+ and 6-phosphogluconate bind randomly and product release is ordered. The pathway through the enzyme--6-phosphogluconate complex appears to be preferred in triethanolamine buffer. Pre-steady-state studies of the oxidative decarboxylation reaction at pH 6.0-8.0 show that hydride transfer is greater than 900 s-1. After the fast formation of NADPH in amounts equivalent to about half of the enzyme-active-centre concentration, the rate of NADPH formation is equal to the steady-state rate. Two possible interpretations are considered. Rapid fluorescence measurements of the displacement of NADPH from its complex with the enzyme at pH 6.0 and 7.0 indicate that the dissociation of NADPH is fast (greater than 800 s-1) and cannot be the rate-limiting step in oxidative decarboxylation. Coenzyme binding studies at equilibrium have been extended to include the determination of the dissociation constants for the binary complexes of enzyme with NADPH and NADP+ at pH 6.0-8.0 and the dissociation constant for NADPH in the ternary enzyme--6-phosphogluconate--NADPH complex in triethanolamine buffer, pH 7.0.  相似文献   

2.
Long-chain mannitol dehydrogenases are secondary alcohol dehydrogenases that are of wide interest because of their involvement in metabolism and potential applications in agriculture, medicine, and industry. They differ from other alcohol and polyol dehydrogenases because they do not contain a conserved tyrosine and are not dependent on Zn(2+) or other metal cofactors. The structures of the long-chain mannitol 2-dehydrogenase (54 kDa) from Pseudomonas fluorescens in a binary complex with NAD(+) and ternary complex with NAD(+) and d-mannitol have been determined to resolutions of 1.7 and 1.8 A and R-factors of 0.171 and 0.176, respectively. These results show an N-terminal domain that includes a typical Rossmann fold. The C-terminal domain is primarily alpha-helical and mediates mannitol binding. The electron lone pair of Lys-295 is steered by hydrogen-bonding interactions with the amide oxygen of Asn-300 and the main-chain carbonyl oxygen of Val-229 to act as the general base. Asn-191 and Asn-300 are involved in a web of hydrogen bonding, which precisely orients the mannitol O2 proton for abstraction. These residues also aid in stabilizing a negative charge in the intermediate state and in preventing the formation of nonproductive complexes with the substrate. The catalytic lysine may be returned to its unprotonated state using a rectifying proton tunnel driven by Glu-292 oscillating among different environments. Despite low sequence homology, the closest structural neighbors are glycerol-3-phosphate dehydrogenase, N-(1-d-carboxylethyl)-l-norvaline dehydrogenase, UDP-glucose dehydrogenase, and 6-phosphogluconate dehydrogenase, indicating a possible evolutionary relationship among these enzymes.  相似文献   

3.
The analogues of the coenzyme NADP+, nicotinamide--8-bromo-adenine dinucleotide phosphate (Nbr8ADP+) and 3-iodopyridine--adenine dinucleotide phosphate (io3PdADP+), were prepared. Nbr8ADP+ was found to be active in the hydrogen transfer adn io3PdADP+ is a coenzyme competitive inhibitor for 6-phosphogluconate dehydrogenase. The binding of NADP+, NADPH and NADPH together with 6-phosphogluconate as well as that of both analogues to crystals of the enzyme 6-phosphogluconate dehydrogenase has been investigated at 0.6-nm resolution using difference electron density maps. The molecules bind in a similar position in a cleft in the enzyme subunit distant from the dimer interface. The orientation of the coenzyme in the site has been determined from the io3PdADP+ -NADP+ difference density. The ternary complex difference density extends beyond that of the nicotinamide moiety of the coenzyme and tentatively indicates substrate binding. No clear identification of the bromine atom of Nbr8ADP+ can be made. However, the analogue is bound more deeply in the cleft than is NADP+. The NADPH density is the most clearly defined and has thus been used to fit a molecular model using an interactive graphics system, checking for preferred geometry. A possible conformation is presented which is significantly different from that of NAD+ in the lactate dehydrogenase ternary complex.  相似文献   

4.
The fluorescence quantum yield of NADPH is enhanced in its complex with 6-phospho-gluconate dehydrogenase, and a further enhancement in the presence of excess 6-phospho-gluconate shows that an abortive ternary complex is formed. There is marked energy transfer from aromatic residues in the enzyme to NADPH in the complexes, as indicated by an excitation maximum at 280 nm in the fluorescence excitation spectrum of the complex. The coenzyme fluorescence enhancement has been used to determine the dissociation constant for NADPH in the binary and ternary complexes, and the stoichiometry of the complexes, from the results of fluorescence titrations. A new method of analysis of fluorescence titration data is described. The results show that each subunit of the dimeric enzyme binds NADPH independently and with the same affinity. The dissociation constant for the enzyme-coenzyme complex, in phosphate buffer, pH 7.0, is 5.7 μm; the dissociation constant for NADPH in the ternary complex with 6-phosphogluconate is 7.0 μm.  相似文献   

5.
6.
The fungus, Cunninghamella elegans has been widely used in bioremediation and microbial models of mammalian studies in many laboratories. Using the polymerase chain reaction to randomly amplify the insert directly from the single non-blue plaques of a C. elegans cDNA library, then partly sequencing and comparing with GenBank sequences, we have identified a clone which contains C. elegans 6-phosphogluconate dehydrogenase gene. The polymerase chain reaction product was cloned into a plasmid, pGEM-T Easy vector for full insert DNA sequencing. The 6-phosphogluconate dehydrogenase gene (1458 bases) and the deduced protein sequence were determined from the insert DNA sequence. The gene was found by open reading frame analysis and confirmed by the alignment of the deduced protein sequence with other published 6-phosphogluconate dehydrogenase sequences. Several highly conserved regions were found for the 6-phosphogluconate dehydrogenase sequences. The 6-phosphogluconate dehydrogenase gene was subcloned and over-expressed in a plasmid–E. coli system (pQE30). The cell lysate of this clone has a very high 6-phosphogluconate dehydrogenase enzyme activity. Most of the recombinant protein in this system was formed as insoluble inclusion bodies, but soluble in high concentration of urea-buffer. Ni-NTA resin was used to purify the recombinant protein which showed 6-phosphogluconate dehydrogenase enzyme activity. The recombinant protein has a predicted molecular size correlating with that revealed by sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. The C. elegans 6-phosphogluconate dehydrogenase was in a cluster with yeast' 6-phosphogluconate dehydrogenase in the phylogenetic tree. Bacterial 6-phosphogluconate dehydrogenase and higher organisms' 6-phosphogluconate dehydrogenase were found in different clusters.  相似文献   

7.
A cDNA clone containing sequences complementary to the mRNA coding for rat hepatic 6-phosphogluconate dehydrogenase has been isolated and used to measure changes in specific mRNA levels during dietary and hormonal regulation of this enzyme. Hepatic mRNA was fractionated by sucrose gradient centrifugation to enrich for 6-phosphogluconate dehydrogenase mRNA sequences. A cDNA library was prepared from the fraction with maximal activity and then screened by differential colony hybridization using probes synthesized either from 6-phosphogluconate dehydrogenase mRNA enriched by polysome immunoadsorption or from unenriched hepatic mRNA. A single colony giving an appropriate differential signal was confirmed to contain sequences encoding 6-phosphogluconate dehydrogenase by specific immunoprecipitation of hybrid-selected translational products. 6-Phosphogluconate dehydrogenase mRNA contains about 2400 bases. The cloned cDNA comprises about 880 bases, or 35% of the mRNA. Southern analysis of restriction endonuclease digests of genomic DNA suggests that the major 6-phosphogluconate dehydrogenase gene is probably present in a single copy in the rat genome. Feeding a fat-free, high carbohydrate diet and administration of thyroid hormone increased the concentration of hybridizable 6-phosphogluconate dehydrogenase mRNA in liver. Thus, both dietary and hormonal regulation of 6-phosphogluconate dehydrogenase synthesis occurs at a pretranslational level.  相似文献   

8.
Resonance energy transfer from Trp-314 to ionized Tyr-286 was proposed (Laws, W. R., and Shore, J. D. (1978) J. Biol. Chem. 253, 8593-8597) as the mechanism for the observed decrease in protein fluorescence of liver alcohol dehydrogenase seen with alkaline pH, or with the formation of a ternary complex with NAD+ and trifluoroethanol. In the present study, ultraviolet difference spectra confirm the presence of ionized tyrosine not only in these two cases but also in the ternary complex with NADH and isobutyramide. Our results indicate that ternary complex formation, with either oxidized or reduced coenzyme, causes a conformational change leading to partial ionization of tyrosine residues in regions of the enzyme far from the active site.  相似文献   

9.
The multiple isotope effect method of Hermes et al. [Hermes, J. D., Roeske, C. A., O'Leary, M. H., & Cleland, W. W. (1982) Biochemistry 21, 5106-5114] has been used to study the mechanism of the oxidative decarboxylation catalyzed by 6-phosphogluconate dehydrogenase from yeast. 13C kinetic isotope effects of 1.0096 and 1.0081 with unlabeled or 3-deuterated 6-phosphogluconate, plus a 13C equilibrium isotope effect of 0.996 and a deuterium isotope effect on V/K of 1.54, show that the chemical reaction after the substrates have bound is stepwise, with hydride transfer preceding decarboxylation. The kinetic mechanism of substrate addition is random at pH 8, since the deuterium isotope effect is the same when either NADP or 6-phosphogluconate or 6-phosphogluconate-3-d is varied at fixed saturating levels of the other substrate. Deuterium isotope effects on V and V/K decrease toward unity at high pH at the same time that V and V/K are decreasing, suggesting that proton removal from the 3-hydroxyl may precede dehydrogenation. Comparison of the tritium effect of 2.05 with the other measured isotope effects gives limits of 3-4 on the intrinsic deuterium and of 1.01-1.05 for the intrinsic 13C isotope effect for C-C bond breakage in the forward direction and suggests that reverse hydride transfer is 1-4 times faster than decarboxylation.  相似文献   

10.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

11.
The topology of phosphogluconate dehydrogenases in rat liver microsomes   总被引:1,自引:0,他引:1  
Rat liver microsomes are known to contain a 6-phosphogluconate dehydrogenase which differs from the 6-phosphogluconate dehydrogenase in the soluble fraction. Microsomes which were washed once bind the soluble phosphogluconate dehydrogenase more tightly than they do glucose-6-phosphate dehydrogenase. Microsomes washed three times in 0.15 M Tris-HCl, pH 8.0, contain only the microsomal 6-phosphogluconate dehydrogenase. Two observations show that this dehydrogenase is located in the cisternae. First, this dehydrogenase is inactive in intact, three times washed microsomes. Second, proteolytic inactivation of 6-phosphogluconate dehydrogenase like that of the cisternal enzyme glucose-6-phosphatase requires disruption of the membrane. Under the conditions used, detergent did not affect the proteolytic inactivation of NADPH-cytochrome c reductase, an enzyme located on the external surface. The excellent correspondence between the activations of hexose phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in microsomes at various stages of disruption of the microsomal membrane produced by detergent supports the earlier contention that these two dehydrogenases are reducing NADP in the same region of the microsomes. A similar experiment which shows an exact correspondence between the activations of 6-phosphogluconate dehydrogenase and mannose-6-phosphatase with increasing concentrations of detergent indicates that the activation of the dehydrogenase can be explained solely by the penetration of the substrates to the active dehydrogenase within the microsomes and strongly suggests that the dehydrogenase is catalytically active in the cisternae.  相似文献   

12.
Li L  Zhang L  Cook PF 《Biochemistry》2006,45(42):12680-12686
Crystal structures of 6-phosphogluconate dehydrogenase (6PGDH) from sheep liver indicate that S128 and N187 are within hydrogen-bonding distance of 6PG in the E:6PG binary complex and NADPH in the E:NADPH binary complex. In addition, H186 is also within hydrogen-bonding distance of NADPH in the E:NADPH binary complex, while in the E:6PG binary complex it is within hydrogen-bonding distance of S128 and close to N187. The structures suggest that this triad of residues may play a dual role during the catalytic reaction. Site-directed mutagenesis has been performed to mutate each of the three residues to alanine. All mutant enzymes exhibit a decrease in V/E(t) (the turnover number), ranging from 7- to 67-fold. An increase in the Km for 6PG (K(6PG)) was observed for S128A and H187A mutant enzymes, while for the H186A mutation, K(6PG) is decreased by a factor of 2. K(NADP) remains the same as the wild type enzyme for the S128A and H186A mutant enzyme, while it increases by 6-fold in the N187A mutant enzyme. An increased K(iNADPH) was measured for all of the mutant enzymes. The primary kinetic 13C-isotope effect is increased, while the primary deuterium kinetic isotope effect is decreased, indicating that the decarboxylation step has become more rate limiting under conditions where substrate is limiting. A quantitative analysis of the data suggests that the S128, H186, and N187 triad is multifunctional in the 6PGDH reaction and contributes as follows. The triad (1) participates in the precatalytic conformational change; (2) provides ground state binding affinity for 6PG and NADPH; and (3) affects the relative rates of reduction or decarboxylation of the 3-keto-6PG intermediate by anchoring the cofactor after hydride transfer, which is accompanied by the rotation of the nicotinamide ring around the N-glycosidic bond and displacement of C1 of 6PG, facilitating decarboxylation.  相似文献   

13.
The route of ethanol formation in Zymomonas mobilis   总被引:5,自引:2,他引:5  
1. Enzymic evidence supporting the operation of the Entner-Doudoroff pathway in the anaerobic conversion of glucose into ethanol and carbon dioxide by Zymomonas mobilis is presented. 2. Cell extracts catalysed the formation of equimolar amounts of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate. Evidence that 3-deoxy-2-oxo-6-phosphogluconate is an intermediate in this conversion was obtained. 3. Cell extracts of the organism contained the following enzymes: glucose 6-phosphate dehydrogenase (active with NAD and NADP), ethanol dehydrogenase (active with NAD), glyceraldehyde 3-phosphate dehydrogenase (active with NAD), hexokinase, gluconokinase, glucose dehydrogenase and pyruvate decarboxylase. Extracts also catalysed the overall conversion of glycerate 3-phosphate into pyruvate in the presence of ADP. 4. Gluconate dehydrogenase, fructose 1,6-diphosphate aldolase and NAD-NADP transhydrogenase were not detected. 5. It is suggested that NAD is the physiological electron carrier in the balanced oxidation-reduction involved in ethanol formation.  相似文献   

14.
Glucose-adapted Streptococcus faecalis produced little if any (14)CO(2) from glucose-1-(14)C, although high levels of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) were detected in cell-free extracts. Metabolism of glucose through the oxidative portion of the hexose-monophosphate pathway was shown to be regulated in this organism by the specific inhibitory interaction of the Embden-Meyerhof intermediate, fructose-1, 6-diphosphate (FDP), with 6-phosphogluconate dehydrogenase. Glucose-6-phosphate dehydrogenase activity was unaffected by FDP. The S. faecalis 6-phosphogluconate dehydrogenase was partially purified from crude extracts by standard fractionation procedures and certain kinetic parameters of the FDP-mediated inhibition were investigated. The negative effector was shown to cause a decrease in V(max) and an increase in the apparent K(m) for both 6-phosphogluconate and nicotinamide adenine dinucleotide phosphate (NADP). These effects were apparently a consequence of the ligand interacting with the enzyme at a site distinct from either the substrate or the coenzyme sites. Among the evidence supporting this was the fact that beta-mercaptoethanol blocked completely FDP inhibition, but had no effect on catalytic activity. The possibility that the regulation of 6-phosphogluconate dehydrogenase activity by FDP might be of some general significance was suggested by the observation that this enzyme from several other sources was also sensitive to FDP.  相似文献   

15.
Glucose-6-phosphate dehydrogenase activity in paired adult Schistosoma mansoni is about twice as great as in paired adult Schistosoma japonicum. 2. 6-phosphogluconate dehydrogenase activity accounts for 25.8% of the measured production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in S. japonicum but only 8.6% of the measured production of NADPH in S. mansoni. 3. These data suggest a species difference in 6-phosphogluconate metabolism.  相似文献   

16.
1. 6-phosphogluconate dehydrogenase from sheep liver has been purified 350-fold by affinity chromatography with a final specific activity of 18 micronmol of NADP+/reduced min per mg of protein and an overall yield of greater than 40%. 2. A systematic investigation of potential ligands has been carried out: these included 6-phosphogluconate and NADP+, pyridoxal phosphate and several immobilized nucleotides. The results indicate that NADP+ is the most suitable ligand for the purification of 6-phosphogluconate dehydrogenase. 3. The effects of pH and alternative eluents have been examined in relation to the parameters known to affect the desorption phase of affinity chromatography; careful manipulation of the elution conditions permitted the separation of glucose 6-phosphate dehydrogenase, glutathione reductase and 6-phosphogluconate dehydrogenase from sheep liver on NADP+-Sepharose 4B. 4. A large-scale purification scheme for 6-phosphogluconate dehydrogenase is presented that uses the competitive inhibitors inorganic pyrophosphate and citrate as specific eluents.  相似文献   

17.
Treatment of the 6-phosphogluconate dehydrogenase from Candida utilis with tetranitromethane results in the partial inactivation of the enzyme. The nitration of approximately one tyrosine residue per enzyme subunit accounts for the loss of 70% of the enzymatic activity. The reduction of the nitrotyrosyl to aminotyrosyl residue does not induce a recovery of activity.  相似文献   

18.
Nucleoside 5'-triphosphates, 5'-diphosphates and 5'-monophosphates are inhibitors of the 6-phosphogluconate dehydrogenase enzyme from bass liver. The 2'- and 3'-monophosphates of adenosine and guanosine are also inhibitory, the 2'-isomers being especially potent inhibitors. The catalytic activity of 6-phosphogluconate dehydrogenase has been found to be markedly inhibited by fructose 1, 6 bisphosphate. As the Km for 6-phosphogluconate, the Ki for fructose 1,6 bisphosphate and the concentration of both compounds in bass liver are all comparable, it appears that the inhibition of 6-phosphogluconate dehydrogenase by fructose 1,6 bisphosphate may be of significance in the regulation of carbohydrate metabolism in bass liver.  相似文献   

19.
Sheep liver 6-phosphogluconate dehydrogenase is shown to be inactivated by diethylpyrocarbonate in a biphasic manner at pH 6.0, 25 degrees C. After allowing for the hydrolysis of the reagent, rate constants of 56 M-1 s-1 and 11.0 M-1 s-1 were estimated for the two processes. The complete reactivation of partially inactivated enzyme by neutral hydroxylamine, the elimination of the possibility that modification of cysteine or tyrosine residues are responsible for inactivation, and the magnitudes of the rate constants for inactivation relative to the experimentally determined value for the reaction of diethylpyrocarbonate with N alpha-acetylhistidine (2.2 M-1 s-1), all suggested that enzyme inactivation occurs solely by modification of histidine residues. Comparison of the experimental plot of residual fractional activity versus the number of modified histidine residues per subunit with simulated plots for three hypothetical models, each predicting biphasic kinetics, indicated that inactivation results from the modification of at most one essential histidine residue per subunit, although it appears that other (non-essential) histidines react independently. This histidine is thought to be His-242 and is present in the active site. Evidence in support of its role in catalysis is briefly discussed. Both 6-phosphogluconate and organic phosphate protect against inactivation, and a kinetic analysis of the protection indicated a dissociation constant of 2.1 X 10(-6) M for the enzyme--6-phosphogluconate complex. NADP+ also protected, but this might be due, at least in part, to a reduction in the effective concentration of diethylpyrocarbonate.  相似文献   

20.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase and pyruvate kinase of Candida utilis and baker's yeast, when in anionic form, were adsorbed on a cation exchanger, P-cellulose, due to affinities similar to those for the phosphoric groups of their respective substrates; thus, glucose-6-phosphate dehydrogenase was readily eluted by either NADP+ or NADPH, glutathione reductase by NADPH, 6-phosphogluconate dehydrogenase by 6-phosphogluconate, and pyruvate kinase by either ATP or ADP. This type of chromatography may be called "affinity-adsorption-elution chromatography"; the main principle is different from that of so-called affinity-elution chromatography. Based on these findings, a large-scale procedure suitable for successive purification of several enzymes having affinities for the phosphoric groups of their substrates was devised. As an example, glucose-6-phosphate dehydrogenase was highly purified from baker's yeast and crystallized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号