首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The differentiation of naive CD4(+) T cells into either proinflammatory Th1 or proallergic Th2 cells strongly influences autoimmunity, allergy, and tumor immune surveillance. We previously demonstrated that beta1,6GlcNAc-branched complex-type (N-acetylglucosaminyltransferase V (Mgat5)) N-glycans on TCR are bound to galectins, an interaction that reduces TCR signaling by opposing agonist-induced TCR clustering at the immune synapse. Mgat5(-/-) mice display late-onset spontaneous autoimmune disease and enhanced resistance to tumor progression and metastasis. In this study we examined the role of beta1,6GlcNAc N-glycan expression in Th1/Th2 cytokine production and differentiation. beta1,6GlcNAc N-glycan expression is enhanced by TCR stimulation independent of cell division and declines at the end of the stimulation cycle. Anti-CD3-activated splenocytes and naive T cells from Mgat5(-/-) mice produce more IFN-gamma and less IL-4 compared with wild-type cells, the latter resulting in the loss of IL-4-dependent down-regulation of IL-4Ralpha. Swainsonine, an inhibitor of Golgi alpha-mannosidase II, blocked beta1,6GlcNAc N-glycan expression and caused a similar increase in IFN-gamma production by T cells from humans and mice, but no additional enhancement in Mgat5(-/-) T cells. Mgat5 deficiency did not alter IFN-gamma/IL-4 production by polarized Th1 cells, but caused an approximately 10-fold increase in IFN-gamma production by polarized Th2 cells. These data indicate that negative regulation of TCR signaling by beta1,6GlcNAc N-glycans promotes development of Th2 over Th1 responses, enhances polarization of Th2 cells, and suggests a mechanism for the increased autoimmune disease susceptibility observed in Mgat5(-/-) mice.  相似文献   

2.
Cheung P  Dennis JW 《Glycobiology》2007,17(7):767-773
Phosphatase and tensin homolog (Pten) phosphatase opposes intracellular phosphoinositide 3-kinase (PI3K)/Akt signaling and is a potent tumor suppressor, while Golgi beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is positively associated with cancer progression and metastasis. beta1,6GlcNAc-branched N-glycans on receptor glycoproteins promote their surface residency and sensitizes cells to growth factor signaling. Here we demonstrate that the Pten heterozygosity in mouse embryonic fibroblasts enhances cell adhesion-dependent PI3K/Akt signaling, cell spreading, and proliferation, while Pten/Mgat5 double mutant cells are normalized. However, planar asymmetry typical of fibroblasts and invasive carcinomas is not fully rescued, suggesting that Mgat5 and Pten function together to regulate the membrane dynamics of PI3K/Akt signaling typical of motile cells. Pten heterozygosity was associated with increased surface beta1,6GlcNAc-branched N-glycans, suggesting positive feedback from PI3K signaling to N-glycan branching. In vivo, Mgat5(-/-) Pten(+/-) and Mgat5(+/-)Pten(+/-)mutant mice showed a small but significant increase in longevity compared with Pten(+/-) mice. Taken together, our results reveal that Mgat5 and Pten interact in an opposing manner to regulate cellular sensitivities to extracelluar growth cues.  相似文献   

3.
Golgi beta1,6-N-acetylglucosaminyltransferase V (Mgat5) produces beta1,6GlcNAc-branched N-glycans on glycoproteins, which increases their affinity for galectins and opposes loss from the cell surface to constitutive endocytosis. Oncogenic transformation increases Mgat5 expression, increases beta1,6GlcNAc-branched N-glycans on epidermal growth factor and transforming growth factor-beta receptors, and enhances sensitivities to ligands, cell motility, and tumor metastasis. Here, we demonstrate that Mgat5(-/-) mouse embryonic fibroblasts (MEFs) display reduced sensitivity to anabolic cytokines and reduced glucose uptake and proliferation. Mgat5(-/-) mice are also hypoglycemic, resistant to weight gain on a calorie-enriched diet, hypersensitive to fasting, and display increased oxidative respiration and reduced fecundity. Serum-dependent activation of the extracellular response kinase (growth) and Smad2/3 (arrest) pathways in Mgat5(-/-) MEFs and bone marrow cells reveals an imbalance favoring arrest. Mgat5(-/-) mice have fewer muscle satellite cells, less osteogenic activity in bone marrow, and accelerated loss of muscle and bone mass with aging. Our results suggest that beta1,6GlcNAc-branched N-glycans promote sensitivity to anabolic cytokines, and increase fat stores, tissue renewal, and longevity.  相似文献   

4.
Lau KS  Khan S  Dennis JW 《Proteomics》2008,8(16):3294-3302
Metabolite flux to UDP-GlcNAc and Golgi N-glycan biosynthesis regulates surface residency of glycoprotein receptors and transporters, and thus sensitivities of cells to extracellular cues. Salvage of GlcNAc increases UDP-GlcNAc and branching of N-glycans progressively, but displays an optimum for cell proliferation and bulk endocytosis in mouse NMuMG and human HEK293T epithelial cells. In this report, we measured global changes in gene expression in low and high GlcNAc-supplemented cells. Genes upregulated by high GlcNAc included the EGF and TGF-beta signaling pathways and cell cycle checkpoint, while downregulated genes indicated lower metabolic activity. Genes increased or decreased by high GlcNAc were assessed by transfecting cells with small interfering RNA (siRNA) and measuring effects on three phenotypes: proliferation and bulk endocytosis, and beta1,6GlcNAc-branching of N-glycans. siRNA targeting LGALS3, WBSCR17, PHF3, SDC2 and CTNNAL1 partially reversed the GlcNAc-induced phenotypes, suggesting a role for galectin-3/N-glycans, proteoglycans, O-glycans, and junctional cell adhesion.  相似文献   

5.
The number of N-glycans (n) is a distinct feature of each glycoprotein sequence and cooperates with the physical properties of the Golgi N-glycan-branching pathway to regulate surface glycoprotein levels. The Golgi pathway is ultrasensitive to hexosamine flux for the production of tri- and tetra-antennary N-glycans, which bind to galectins and form a molecular lattice that opposes glycoprotein endocytosis. Glycoproteins with few N-glycans (e.g., TbetaR, CTLA-4, and GLUT4) exhibit enhanced cell-surface expression with switch-like responses to increasing hexosamine concentration, whereas glycoproteins with high numbers of N-glycans (e.g., EGFR, IGFR, FGFR, and PDGFR) exhibit hyperbolic responses. Computational and experimental data reveal that these features allow nutrient flux stimulated by growth-promoting high-n receptors to drive arrest/differentiation programs by increasing surface levels of low-n glycoproteins. We have identified a mechanism for metabolic regulation of cellular transition between growth and arrest in mammals arising from apparent coevolution of N-glycan number and branching.  相似文献   

6.
Glycoprotein glycosylation and cancer progression   总被引:26,自引:0,他引:26  
Glycosylation of glycoproteins and glycolipids is one of many molecular changes that accompany malignant transformation. GlcNAc-branched N-glycans and terminal Lewis antigen sequences have been observed to increase in some cancers, and to correlate with poor prognosis. Herein, we review evidence that beta1, 6GlcNAc-branching of N-glycans contributes directly to cancer progression, and we consider possible functions for the glycans. Mgat5 encodes N-acetylglucosaminyltransferase V (GlcNAc-TV), the Golgi enzyme required in the biosynthesis of beta1,6GlcNAc-branched N-glycans. Mgat5 expression is regulated by RAS-RAF-MAPK, a signaling pathway commonly activated in tumor cells. Ectopic expression of GlcNAc-TV in epithelial cells results in morphological transformation and tumor growth in mice, and over expression in carcinoma cells has been shown to induce metastatic spread. Ectopic expression of GlcNAc-TIII, an enzyme that competes with GlcNAc-TV for acceptor, suppresses metastasis in B16 melanoma cells. Furthermore, breast cancer progression and metastasis induced by a viral oncogene expressed in transgenic mice is markedly suppressed in a GlcNAc-TV-deficient background. Mgat5 gene expression and beta1, 6GlcNAc-branching of N-glycans are associated with cell motility, a required phenotype of malignant cells.  相似文献   

7.
Oncogenic signaling stimulates the dynamic remodeling of actin microfilaments and substrate adhesions, essential for cell spreading and motility. Transformation is associated with increased expression of beta1,6GlcNAc-branched N-glycans, products of Golgi beta1,6-acetylglucosaminyltransferase V (Mgat5) and the favored ligand for galectins. Herein we report that fibronectin fibrillogenesis and fibronectin-dependent cell spreading are deficient in Mgat5(-/-) mammary epithelial tumor cells and inhibited in Mgat5(+/+) cells by blocking Golgi N-glycan processing with swainsonine or by competitive inhibition of galectin binding. At an optimum dosage, exogenous galectin-3 added to Mgat5(+/+) cells activates focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K), recruits conformationally active alpha5beta1-integrin to fibrillar adhesions, and increases F-actin turnover. RGD peptide inhibits PI3K-dependent fibronectin matrix remodeling and fibronectin-dependent cell motility, while galectin-3 stimulates and overrides the inhibitory effects of RGD. Antibodies to the galectin-3 N-terminal oligomerization domain stimulate alpha5beta1 activation and recruitment to fibrillar adhesions in Mgat5(+/+) cells, an effect that is blocked by disrupting galectin-glycan binding. Our results demonstrate that fibronectin polymerization and tumor cell motility are regulated by galectin-3 binding to branched N-glycan ligands that stimulate focal adhesion remodeling, FAK and PI3K activation, local F-actin instability, and alpha5beta1 translocation to fibrillar adhesions.  相似文献   

8.
Suppression of tumor growth and metastasis in Mgat5-deficient mice   总被引:22,自引:0,他引:22  
Golgi beta1,6N-acetylglucosaminyltransferase V (MGAT5) is required in the biosynthesis of beta1,6GlcNAc-branched N-linked glycans attached to cell surface and secreted glycoproteins. Amounts of MGAT5 glycan products are commonly increased in malignancies, and correlate with disease progression. To study the functions of these N-glycans in development and disease, we generated mice deficient in Mgat5 by targeted gene mutation. These Mgat5-/- mice lacked Mgat5 products and appeared normal, but differed in their responses to certain extrinsic conditions. Mammary tumor growth and metastases induced by the polyomavirus middle T oncogene was considerably less in Mgat5-/- mice than in transgenic littermates expressing Mgat5. Furthermore, Mgat5 glycan products stimulated membrane ruffling and phosphatidylinositol 3 kinase-protein kinase B activation, fueling a positive feedback loop that amplified oncogene signaling and tumor growth in vivo. Our results indicate that inhibitors of MGAT5 might be useful in the treatment of malignancies by targeting their dependency on focal adhesion signaling for growth and metastasis.  相似文献   

9.
Targeted gene mutations in mice that cause deficiencies in protein glycosylation have revealed functions for specific glycans structures in embryogenesis, immune cell regulation, fertility and cancer progression. UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (GlcNAc-TV or Mgat5) produces N-glycan intermediates that are elongated with poly N-acetyllactosamine to create ligands for the galectin family of mammalian lectins. We generated Mgat5-deficient mice by gene targeting methods in embryonic stem cells, and observed a complex phenotype in adult mice including susceptibility to autoimmune disease, reduced cancer progression and a behavioral defect. We found that Mgat5-modified N-glycans on the T cell receptor (TCR) complex bind to galectin-3, sequestering TCR within a multivalent galectin-glycoprotein lattice that impedes antigen-dependent receptor clustering and signal transduction. Integrin receptor clustering and cell motility are also sensitive to changes in Mgat5-dependent N-glycosylation. These studies demonstrate that low affinity but high avidity interactions between N-glycans and galectins can regulate the distribution of cell surface receptors and their responsiveness to agonists.  相似文献   

10.
Macromolecular complexes exhibit reduced diffusion in biological membranes; however, the physiological consequences of this characteristic of plasma membrane domain organization remain elusive. We report that competition between the galectin lattice and oligomerized caveolin-1 microdomains for epidermal growth factor (EGF) receptor (EGFR) recruitment regulates EGFR signaling in tumor cells. In mammary tumor cells deficient for Golgi beta1,6N-acetylglucosaminyltransferase V (Mgat5), a reduction in EGFR binding to the galectin lattice allows an increased association with stable caveolin-1 cell surface microdomains that suppresses EGFR signaling. Depletion of caveolin-1 enhances EGFR diffusion, responsiveness to EGF, and relieves Mgat5 deficiency-imposed restrictions on tumor cell growth. In Mgat5(+/+) tumor cells, EGFR association with the galectin lattice reduces first-order EGFR diffusion rates and promotes receptor interaction with the actin cytoskeleton. Importantly, EGFR association with the lattice opposes sequestration by caveolin-1, overriding its negative regulation of EGFR diffusion and signaling. Therefore, caveolin-1 is a conditional tumor suppressor whose loss is advantageous when beta1,6GlcNAc-branched N-glycans are below a threshold for optimal galectin lattice formation.  相似文献   

11.
The relations between the structure of cell surface N-glycans to cell behaviors were studied in H7721 human hepatocarcinoma cell line, which predominantly expressed complex-type N-glycans on the surface. 1-Deoxymannojirimycin (DMJ) and swaisonine (SW), the specific inhibitor of Golgi alpha-mannosidase II or I, were selected to block the processing of N-glycans at the steps of high mannose and hybrid type respectively. All-trans retinoic acid (ATRA) and antisense cDNA of N-acetylglucosaminyltransferase-V (GnT-V) were used to suppress the expression of GnT-V and decreased the GlcNAc beta1,6-branching or tri-/tetra-antennary structure of surface N-glycans. The structural alterations of N-glycans were verified by sequential lectin affinity chromatography of [3H] mannose-labeled glycans isolated from the cell surface. The cell adhesions to fibronectin (Fn) and human umbilical vein epithelial cell (HUVEC), as well as cell migration (including chemotaxis and invasion) were selected as the parameters of cell behaviors. It was found that cell adhesion and migration were significantly decreased in SW and DMJ treated cells, suggesting that complex type N-glycan is critical for the above cell behaviors. ATRA and antisense GnTV enhanced cell adhesion to Fn but reduce cell adhesion to HUVEC and cell migration. These results reveal that cell surface complex-type N-glycans with GlcNAc beta1,6 branch are more effective than those without this branch in the cell adhesion to HUVEC and cell migration, but N-glycan without GlcNAc beta1,6-branch is the better one in mediating the cell adhesion to Fn. The integrin alpha5beta1 (receptor of Fn) on cell surface was unchanged by DMJ and SW. In contrast, ATRA up regulated alpha5, but not beta1, and antisense GnT-V decreased both alpha5 and beta1. This findings suggest that both the structure of N-glycan and the expression of integrin on cell surface are two of the important factors in the determination of cell adhesion to Fn, a complex biological process.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) signals through three highly conserved cell surface receptors, the type III TGF-beta receptor (T beta RIII), the type II TGF-beta receptor (T beta RII), and the type I TGF-beta receptor (T beta RI) to regulate diverse cellular processes including cell proliferation, differentiation, migration, and apoptosis. Although T beta RI and T beta RII undergo ligand-independent endocytosis by both clathrin-mediated endocytosis, resulting in enhanced signaling, and clathrin-independent endocytosis, resulting in receptor degradation, the mechanism and function of T beta RIII endocytosis is poorly understood. T beta RIII is a heparan sulfate proteoglycan with a short cytoplasmic tail that functions as a TGF-beta superfamily co-receptor, contributing to TGF-beta signaling through mechanisms yet to be fully defined. We have reported previously that T beta RIII endocytosis, mediated by a novel interaction with beta arrestin-2, results in decreased TGF-beta signaling. Here we demonstrate that T beta RIII undergoes endocytosis in a ligand and glycosaminoglycan modification-independent and cytoplasmic domain-dependent manner, with the interaction of Thr-841 in the cytoplasmic domain of T beta RIII with beta-arrestin2 enhancing T beta RIII endocytosis. T beta RIII undergoes both clathrin-mediated and clathrin-independent endocytosis. Importantly, inhibition of the clathrin-independent, lipid raft pathway, but not of the clathrin-dependent pathway, results in decreased TGF-beta1 induced Smad2 and p38 phosphorylation, supporting a specific role for clathrin-independent endocytosis of T beta RIII in regulating both Smad-dependent and Smad-independent TGF-beta signaling.  相似文献   

13.
Lau KS  Dennis JW 《Glycobiology》2008,18(10):750-760
N-Glycan branching in the medial-Golgi generates ligands for lattice-forming lectins (e.g., galectins) that regulate surface levels of glycoproteins including epidermal growth factor (EGF) and transforming growth factor-beta (TGF-beta) receptors. Moreover, functional classes of glycoproteins differ in N-glycan multiplicities (number of N-glycans/peptide), a genetically encoded feature of glycoproteins that interacts with metabolic flux (UDP-GlcNAc) and N-glycan branching to differentially regulate surface levels. Oncogenesis increases beta1,6-N-acetylglucosaminyltransferase V (encoded by Mgat5) expression, and its high-affinity galectin ligands promote surface retention of growth receptors with a reduced dependence on UDP-GlcNAc. Mgat5(-/-) tumor cells are less metastatic in vivo and less responsive to cytokines in vitro, but undergo secondary changes that support tumor cell proliferation. These include loss of Caveolin-1, a negative regulator of EGF signaling, and increased reactive oxygen species, an inhibitor of phosphotyrosine phosphatases. These studies suggest a systems approach to cancer treatment where the surface distribution of receptors is targeted through metabolism and N-glycan branching to induce growth arrest.  相似文献   

14.
STAT3 activation has been observed in several autoimmune diseases, suggesting that STAT3-mediated pathways promote pathologic immune responses. We provide in vivo evidence that the fundamental role of STAT3 signaling in autoimmunity relates to its absolute requirement for generating T(H)17 T cell responses. We show that STAT3 is a master regulator of this pathogenic T cell subtype, acting at multiple levels in vivo, including T(H)17 T cell differentiation and cytokine production, as well as induction of RORgamma t and the IL-23R. Neither naturally occurring T(H)17 cells nor T(H)17-dependent autoimmunity occurs when STAT3 is ablated in CD4 cells. Furthermore, ablation of STAT3 signaling in CD4 cells results in increased T(H)1 responses, indicating that STAT3 signaling skews T(H) responses away from the T(H)1 pathway and toward the T(H)17 pathway. Thus, STAT3 is a candidate target for T(H)17-dependent autoimmune disease immunotherapy that could selectively inhibit pathogenic immune pathways.  相似文献   

15.
The bisecting GlcNAc is transferred to the core mannose residue of complex or hybrid N-glycans on glycoproteins by the β1,4-N-acetylglucosaminyltransferase III (GlcNAcT-III) or MGAT3. The addition of the bisecting GlcNAc confers unique lectin recognition properties to N-glycans. Thus, LEC10 gain-of-function Chinese hamster ovary (CHO) cells selected for the acquisition of ricin resistance, carry N-glycans with a bisecting GlcNAc, which enhances the binding of the erythroagglutinin E-PHA, but reduces the binding of ricin and galectins-1, -3 and -8. The altered interaction with galactose-binding lectins suggests that the bisecting GlcNAc affects N-glycan conformation. LEC10 mutants expressing polyoma middle T antigen (PyMT) exhibit reduced growth factor signaling. Furthermore, PyMT-induced mammary tumors lacking MGAT3, progress more rapidly than tumors with the bisecting GlcNAc on N-glycans of cell surface glycoproteins. In recent years, evidence for a new paradigm of cell growth control has emerged involving regulation of cell surface residency of growth factor and cytokine receptors via interactions and cross-linking of their branched N-glycans with a lattice of galectin(s). Specific cross-linking of glycoprotein receptors in the lattice regulates their endocytosis, leading to effects on growth factor-induced signaling. This review will describe evidence that the bisecting GlcNAc of N-glycans regulates cellular signaling and tumor progression, apparently through modulating N-glycan/galectin interactions.  相似文献   

16.
Multiple sclerosis (MS) is characterized by inflammatory demyelination of axons and neurodegeneration, the latter inadequately modeled in experimental autoimmune encephalomyelitis (EAE). Susceptibility of inbred mouse strains to EAE is in part determined by major histocompatibility complex haplotype; however, other molecular mechanisms remain elusive. Galectins bind GlcNAc-branched N-glycans attached to surface glycoproteins, forming a molecular lattice that restricts lateral movement and endocytosis of glycoproteins. GlcNAc branching negatively regulates T cell activity and autoimmunity, and when absent in neurons, induces apoptosis in vivo in young adult mice. We find that EAE susceptible mouse strains PL/J, SJL, and NOD have reduced GlcNAc branching. PL/J mice display the lowest levels, partial deficiencies in N-acetylglucosaminyltransferase I, II, and V (i.e. Mgat1, -2, and -5), T cell hyperactivity and spontaneous late onset inflammatory demyelination and neurodegeneration; phenotypes markedly enhanced by Mgat5(+/-) and Mgat5(-/-) backgrounds in a gene dose-dependent manner. Spontaneous disease is transferable and characterized by progressive paralysis, tremor, dystonia, neuronophagia, and axonal damage in both demyelinated lesions and normal white matter, phenocopying progressive MS. Our data identify hypomorphic Golgi processing as an inherited trait that determines susceptibility to EAE, provides a unique spontaneous model of MS, and suggests GlcNAc-branching deficiency may promote T cell-mediated demyelination and neurodegeneration in MS.  相似文献   

17.
Activation of T cells requires at least two signals transduced by the Ag-specific TCR and a costimulatory ligand such as CD28. CTLA-4, expressed on activated T cells, binds to B7 present on APCs and functions as a negative regulator of T cell activation. Our laboratory previously reported the association of Graves' disease (GD) with a specific CTLA-4 gene polymorphism. In theory, reduced expression or function of CTLA-4 might augment autoimmunity. In the present study, we categorized autoimmune thyroid disease patients and normal controls (NC) by genotyping a CTLA-4 exon 1 polymorphism and investigated the function of CTLA-4 in all subjects. PBMCs and DNA were prepared from GD (n = 45), Hashimoto's thyroiditis (HT) (n = 18), and NC (n = 43). There were more GD patients with the G/G or A/G alleles (82.2% vs 65.1% in NC), and significantly fewer patients with the A/A allele (17.8% vs 34.9% in NC). In the presence of soluble blocking anti-human CTLA-4 mAb, T cell proliferation following incubation with allogeneic EBV-transformed B cells was augmented in a dose-dependent manner. Augmentation induced by CTLA-4 mAb was similar in GD and NC (GD, HT, NC = 156%, 164%, 175%, respectively). We related CTLA-4 polymorphism to mAb augmentation of T cell proliferation in each subgroup (GD, HT, NC). Although PBMC from individuals with the G/G alleles showed 132% augmentation, those with the A/A alleles showed 193% augmentation (p = 0.019). CTLA-4 polymorphism affects the inhibitory function of CTLA-4. The G allele is associated with reduced control of T cell proliferation and thus contributes to the pathogenesis of GD and presumably of other autoimmune diseases.  相似文献   

18.
Costimulation between T cells and APC is required for productive immune responses. A number of receptor/ligand pairs have been shown to mediate costimulation, including CD28/B7 molecules (CD80 and CD86), CD40/CD40 ligand (CD40L, CD154), and LFA-1 (CD18)/ICAM-1 (CD54). T-B cell costimulation also plays a significant role in autoimmune diseases such as systemic lupus erythematosus. Murine HgCl2-induced autoimmunity (mHgIA) is a T cell-dependent systemic autoimmune disease that shares a number of common pathogenic mechanisms with idiopathic lupus. In this report, the significance of costimulation in mHgIA is examined by attempting to induce disease in mice deficient in either CD40L, CD28, or ICAM-1. Unlike absence of ICAM-1, homozygous deficiencies in either CD40L or CD28 significantly reduced the development of mHgIA. CD40L displayed a gene dosage effect as heterozygous mice also showed reduction of autoantibody responses and immunopathology. Markers of T cell activation such as CD44 and CTLA-4 were associated with disease expression in wild-type and ICAM-1-deficient mice but not in CD40L- or CD28-deficient mice. Absence of CTLA-4 expression in CD40L-/- mice suggests that signaling via both CD28 and CD40L is important for T cell activation and subsequent autoimmunity in mHgIA. Attempts to circumvent the absence of CD40L by increasing CD28 signaling via agonistic Ab failed to elicit CTLA-4 expression. These findings indicate that breaking of self-tolerance in mHgIA requires signaling via both the CD28/B7 and CD40/CD40L pathways.  相似文献   

19.
Insect cells, like other eucaryotic cells, modify many of their proteins by N-glycosylation. However, the endogenous insect cell N-glycan processing machinery generally does not produce complex, terminally sialylated N-glycans such as those found in mammalian systems. This difference in the N-glycan processing pathways of insect cells and higher eucaryotes imposes a significant limitation on their use as hosts for baculovirus-mediated recombinant glycoprotein production. To address this problem, we previously isolated two transgenic insect cell lines that have mammalian beta1,4-galactosyltransferase or beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes. Unlike the parental insect cell line, both transgenic cell lines expressed the mammalian glycosyltransferases and were able to produce terminally galactosylated or sialylated N-glycans. The purpose of the present study was to investigate the structures of the N-glycans produced by these transgenic insect cell lines in further detail. Direct structural analyses revealed that the most extensively processed N-glycans produced by the transgenic insect cell lines were novel, monoantennary structures with elongation of only the alpha1,3 branch. This led to the hypothesis that the transgenic insect cell lines lacked adequate endogenous N-acetylglucosaminyltransferase II activity for biantennary N-glycan production. To test this hypothesis and further extend the N-glycan processing pathway in Sf9 cells, we produced a new transgenic line designed to constitutively express a more complete array of mammalian glycosyltransferases, including N-acetylglucosaminyltransferase II. This new transgenic insect cell line, designated SfSWT-1, has higher levels of five glycosyltransferase activities than the parental cells and supports baculovirus replication at normal levels. In addition, direct structural analyses showed that SfSWT-1 cells could produce biantennary, terminally sialylated N-glycans. Thus, this study provides new insight on the glycobiology of insect cells and describes a new transgenic insect cell line that will be widely useful for the production of more authentic recombinant glycoproteins by baculovirus expression vectors.  相似文献   

20.
The de novo generation of Foxp3+ regulatory T (Treg) cells in the peripheral immune compartment and the differentiation of Th17 cells both require TGF-beta, and IL-6 and IL-21 are switch factors that drive the development of Th17 cells at the expense of Treg cell generation. The major vitamin A metabolite all-trans retinoic acid (RA) not only enforces the generation of Treg cells but also inhibits the differentiation of Th17 cells. Herein we show that RA enhances TGF-beta signaling by increasing the expression and phosphorylation of Smad3, and this results in increased Foxp3 expression even in the presence of IL-6 or IL-21. RA also inhibits the expression of IL-6Ralpha, IRF-4, and IL-23R and thus inhibits Th17 development. In vitro, RA significantly promotes Treg cell conversion, but in vivo during the development of experimental autoimmune encephalomyelitis it does not increase the frequency of Treg cells in the face of an ongoing inflammation. However, RA suppresses the disease very efficiently by inhibiting proinflammatory T cell responses, especially pathogenic Th17 responses. These data not only identify the signaling mechanisms by which RA can affect both Treg cell and Th17 differentiation, but they also highlight that in vivo during an autoimmune reaction, RA suppresses autoimmunity mainly by inhibiting the generation of effector Th17 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号