首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gram-positive bacterium Clavibacter michiganensis subsp. sepedonicus is the causal agent of bacterial wilt and ring rot of potato. So far, only two proteins have been shown to be essential for virulence, namely a plasmid-encoded cellulase CelA and a hypersensitive response-inducing protein. We have examined the relative expression of CelA and eight putative virulence factors during infection of potato and in liquid culture, using quantitative real-time PCR. The examined putative virulence genes were celB, a cellulase-encoding gene and genes encoding a pectate lyase, a xylanase and five homologues of the Clavibacter michiganensis subsp. michiganensis pathogenicity factor Pat-1 thought to encode a serine protease. Six of the nine assayed genes were up-regulated during infection of potato, including celA, celB, the xylanase gene, and two of the pat genes. The pectate lyase gene showed only slightly elevated expression, whereas three of the five examined pat genes were down-regulated during infection in potato. Interestingly, the two up-regulated pat genes showed a noticeable sequence difference compared to the three down-regulated pat genes. These results reveal several new proteins that are likely to be involved in Clavibacter michiganensis subsp. sepedonicus pathogenicity.  相似文献   

2.
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.  相似文献   

3.
Clavibacter michiganensis subsp. michiganensis (Cmm) is a seed-transmitted, quarantine pathogen which causes bacterial wilt and canker of tomato. Despite efforts to prevent seed contamination, new introductions are regularly detected, associated with new regions of tomato seed production. It seems as if the expanding diversity of Cmm also challenges the limited host range.  相似文献   

4.
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.  相似文献   

5.
6.
7.
8.
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.  相似文献   

9.
Biological treatments to control bacterial canker of greenhouse tomatoes   总被引:1,自引:0,他引:1  
Raj Utkhede  Carol Koch 《BioControl》2004,49(3):305-313
Experiments were conducted to determine the effects of treatments on Clavibacter michiganensis subsp. michiganensis in vitro and on young seedlingsinoculated with the pathogen under greenhouseconditions. Lysozyme was bactericidal at 10 g/l concentration in vitro. Tomato plantstreated with lysozyme at 10 g/l and 100 g/lshowed significantly higher plant heightcompared with the inoculated control plants,and plants in these treatments were as tall asthose observed in untreated uninoculatedcontrol plants. Treatments with B. subtilis (Quadra 136) and Trichoderma harzianum (RootShield®), lysozyme,vermicompostea, Rhodosporidium diobovatum(S33), B. subtilis (Quadra 137) appliedas a spray at 0.3 g/l, 0.6 g/l, 10 g/l,concentrated, 1 × 109 CFU/ml, and 0.5 g/l,respectively, have the ability to prevent theincidence of bacterial canker of tomato plantscaused by C. michiganensis subsp.michiganensis under greenhouse conditions.  相似文献   

10.
11.
Mycobacterium avium subsp. hominissuis (MAH) is an environmental bacterium causing opportunistic infections. The objective of this study was to identify flexible genome regions in MAH isolated from different sources. By comparing five complete and draft MAH genomes we identified a genomic island conferring additional flexibility to the MAH genomes. The island was absent in one of the five strains and had sizes between 16.37 and 84.85 kb in the four other strains. The genes present in the islands differed among strains and included phage- and plasmid-derived genes, integrase genes, hypothetical genes, and virulence-associated genes like mmpL or mce genes.  相似文献   

12.
Bouzid Nedjimi  Youcef Daoud 《Flora》2009,204(4):316-324
Atriplex halimus subsp. schweinfurthii is a newly found cadmium (Cd)-hyperaccumulator, but there have been no detailed studies on its physiological responses when Cd is hyperaccumulated. A. halimus was grown in hydroponic conditions to investigate the effect of cadmium chloride (CdCl2) on growth, water status, leaf chlorophyll concentration, proline and Cd accumulation. Treatments were prepared by adding 0, 50, 100, 200 and 400 μM CdCl2 to the nutrient medium. Plant growth was significantly affected at high-Cd treatments. Increased CdCl2 decreased chlorophyll concentration, transpiration and root hydraulic conductivity (L0). Hence water flux had only a little effect on the uptake of Cd in A. halimus seedlings. In contrast, proline content increased with increasing CdCl2 concentration. Plants accumulated substantial amount of Cd in different plant parts (shoot and root). Most of the Cd taken up was retained in roots (606.51 μg g−1DW after 15 d at 400 μM CdCl2). The addition of Cd in the culture medium affected calcium (Ca) and potassium (K) nutrition in both shoot and root. A. halimus provides a new plant resource for exploring the mechanism of Cd hyperaccumulation and has potential for use in the phytostabilization of Cd-contaminated salt soils.  相似文献   

13.
Previous studies indicate that Aeromonas aquariorum and Aeromonas hydrophila subsp. dhakensis are the same taxon and suggest that they should be synonymized. Using a polyphasic approach, the phenotypic and phylogenetic relationship of A. aquariorum with the 3 defined A. hydrophila subspecies (i.e. dhakensis, hydrophila, ranae) was investigated. Phylogenetic trees derived from the 16S rRNA, rpoD or gyrB genes and a multilocus phylogenetic analysis (with the concatenated sequences of gyrB, rpoD, recA, dnaJ and gyrA) confirmed that both A. aquariorum and A. hydrophila subsp. dhakensis are a unique taxon, different from the other A. hydrophila subspecies, corroborating the phenotypic and DNA–DNA hybridization (DDH) results. A formal synonymization of A. aquariorum and A. hydrophila subsp. dhakensis and a reclassification of both as Aeromonas dhakensis sp. nov. comb nov. is therefore proposed.  相似文献   

14.
15.
16.
Mago nashi (Mago) and Y14 proteins, highly conserved among eukaryotes, participate in mRNA localization and splicing, and as such play important roles in oogenesis, embryogenesis and germ-line sex determination during animal development. Here we identified mago (Acmago) and Y14 (AcY14) homologues derived from Antrodia cinnamomea. Acmago encodes 149 amino acids and AcY14 encodes 168 amino acids. Multiple amino acid sequence alignment as well as secondary and tertiary structure prediction showed that AcMago and AcY14 have similar protein structure to the reported crystal structures of other Mago and Y14 proteins. During fungal development both Acmago and AcY14 genes were abundantly expressed in natural basidiomes. This is the first report of the molecular characterization and expression analysis of the mago and Y14 genes from fungi.  相似文献   

17.
18.
19.
Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ mutant vaccine strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号