首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundGestational diabetes mellitus (GDM) and preeclampsia (PE) are common complications during pregnancy. Studies indicated that abnormal bile acid metabolism is related to its pathogenesis. Intrahepatic cholestasis of pregnancy (ICP) is the most common pregnancy-specific liver disease, which classic symptoms include generalized pruritus that commonly and biochemical evidence of elevated bile acids. Our study aimed to explore the correlation between the ICP presence and risk of GDM, PE incident in pregnant women.MethodsA meta-analysis, which included 10 eligible studies including 17,688 ICP cases and 1,386,771 controls, was performed to assess the correlation of ICP with preeclampsia (PE) and gestational diabetes mellitus (GDM). There were 7 studies investigating the relationship between ICP and PE, and 9 studies that evaluated the relationship between ICP and GDM. All eligible studies were screened from Pubmed, Web of Science and EBSCO databases.ResultsThe results of this meta-analysis indicate that ICP significantly increase the risk for both PE (pooled odds ratio OR: 2.56 95%CI: 2.27 2.88, I2 heterogeneity = 35%, p heterogeneity = 0.16) and GDM (pooled OR: 2.28 95%CI: 1.69 3.07, I2 heterogeneity = 81%, p heterogeneity < 0.001). In the sensitivity analysis of GDM, excluding the largest heterogeneity study cannot change the result (pooled OR: 2.86 95%CI: 2.59 3.16, I2 heterogeneity = 0%, p heterogeneity = 0.56).ConclusionsThis meta-analysis shows that ICP is closely associated with ICP increased risk of PE and GDM) during pregnancy.  相似文献   

2.
A successful pregnancy requires the maternal immune system to tolerate an allogeneic fetus. The incidence of preeclampsia and other complications related to impaired fetal tolerance is lower during the second pregnancy than during the first pregnancy. At the same time, compared with normal pregnant women in the previous pregnancy, patients with pregnancy complications in the previous pregnancy also have an increased risk of the disease when they become pregnant again. This difference may be related to the immunological memory of pregnancy. Regulatory T cells (Tregs) are immunosuppressive CD4+ T cells that play a predominant role in maintaining immune tolerance. In addition, Tregs possess immunological memory properties, including fetal or paternal-specific memory Tregs and Tregs expressing memory cell makers, forming an immunoregulatory memory against fetal antigens. In this review, we provide an overview of the characteristics of memory Tregs in pregnancy, evidence regarding the existence of memory Tregs in human pregnancy, as well as in mouse models. We also discuss the mechanism of memory Tregs induction, maintenance, and action. In addition, we described their changes during the first pregnancy, second pregnancy, postpartum, and pathological pregnancy in order to provide new targets for the diagnosis and treatment of pregnancy related diseases.  相似文献   

3.
Malassezia, a lipophilic and lipid-dependent yeast, is a microorganism of current interest to mycobiologists because of its role as a commensal or pathogen in health conditions such as dermatological diseases, fungemia, and, as discovered recently, cancer and certain neurological disorders. Various novel approaches in the study of Malassezia have led to increased knowledge of the cellular and molecular mechanisms of this yeast. However, additional efforts are needed for more comprehensive understanding of the behavior of Malassezia in interactions with the host. This article reviews advances useful in the experimental field for Malassezia.  相似文献   

4.
Host-parasite coevolution is a key driver of biological diversity and parasite virulence, but its effects depend on the nature of coevolutionary dynamics over time. We used phenotypic data from coevolving populations of the bacterium Pseudomonas fluorescens SBW25 and parasitic phage SBW25Φ2, and genetic data from the phage tail fibre gene (implicated in infectivity evolution) to show that arms race dynamics, typical of short-term studies, decelerate over time. We attribute this effect to increasing costs of generalism for phages and bacteria with increasing infectivity and resistance. By contrast, fluctuating selection on individual host and parasite genotypes was maintained over time, becoming increasingly important for the phenotypic properties of parasite and host populations. Given that costs of generalism are reported for many other systems, arms races may generally give way to fluctuating selection in antagonistically coevolving populations.  相似文献   

5.
Through social interactions, phenotypes of conspecifics can affect an individual's fitness, resulting in social selection. Social selection is assumed to represent a strong and dynamic evolutionary force that can act with or in opposition to natural selection. Few studies, however, have estimated social selection and its contribution to total selection in the wild. We estimated natural and social selection gradients on exploration, docility, and body mass, and their contribution to selection differentials, in a wild eastern chipmunk population (Tamias striatus). We applied trait-based multiple regression models derived from classical phenotypic selection analyses, which allowed us to include several social partners (i.e., neighbors). We detected social selection gradients on female docility and male body mass, indicating that female with docile neighbors and males with large neighbors had lower fitness. In both sexes, social selection gradients varied with the season. However, we found no phenotypic assortment or disassortment for the studied traits. Social selection gradients, therefore, did not contribute to total selection differentials, and natural selection alone could drive phenotypic changes. Evaluating the factors that drive the evolution of the covariance between interacting phenotypes is necessary to understand the role of social selection as an evolutionary force.  相似文献   

6.
The impact of sexual selection on the adaptive process remains unclear. On the one hand, sexual selection might hinder adaptation by favouring costly traits and preferences that reduce nonsexual fitness. On the other hand, condition dependence of success in sexual selection may accelerate adaptation. Here, we used replicate populations of Drosophila melanogaster to artificially select on male desiccation resistance while manipulating the opportunity for precopulatory sexual selection in a factorial design. Following five generations of artificial selection, we measured the desiccation resistance of males and females to test whether the addition of sexual selection accelerated adaptation. We found a significant interaction between the effects of natural selection and sexual selection: desiccation resistance was highest in populations where sexual selection was allowed to operate. Despite only selecting on males, we also found a correlated response in females. These results provide empirical support for the idea that sexual selection can accelerate the rate of adaptation.  相似文献   

7.
In the Descent of Man, Darwin wrote “the power to charm the female has sometimes been more important than the power to conquer other males in battle” (Darwin 1871 ). Since his pioneering work, the field of sexual selection has exploded as biologists strive to understand how females bias fertilization towards preferred males. In the context of genetic relatedness between potential mates, two main hypotheses exist to explain female mating preferences. First, a female may bias fertilization towards genetically dissimilar males if she gains evolutionary fitness through the production of genetically diverse offspring – a model known as dissortative mating or inbreeding avoidance. Second, a female may favour genetically similar males if her offspring are more likely to inherit coadapted gene complexes – a model known as assortative mating or outbreeding avoidance. In this issue of Molecular Ecology, Gasparini et al. (2015) demonstrate that female guppies bias fertilization towards males which are more related to them at major histocompatibility (MHC) class IIB genes. Amazingly, this bias occurs after insemination of sperm from two different males.  相似文献   

8.
By using selection differentials, gradients and structural equation modelling (SEM), I have quantified the phenotypic selection acting on Lobularia maritima (Cruciferae) flower size, display, colour and density, using data on lifetime female fitness. Furthermore, by analysing the resulting F1 generation in field and greenhouse conditions, I estimated the actual intergenerational change in the value of these traits. Both pollinators preferred plants with many and large flowers. Strong directional selection for increased flower display was found in all years of the study, regardless of the technique used. Indirect selection due to a high significant correlation with flower display occurred on flower colour and size. SEM showed that pollinators played only a minor role in this observed phenotypic selection. The analysis of the phenotypes of F1 plants showed that flower display actually increased across generations. In addition, white flowers were significantly more frequent in the offspring population than in the parental one, mostly due to the association between flower display and white coloured flowers. This suggests that both direct and indirect selection can play a role in the evolution of correlated traits in this crucifer.  相似文献   

9.
Genes and culture represent two streams of inheritance that for millions of years have flowed down the generations and interacted. Genetic propensities, expressed throughout development, influence what cultural organisms learn. Culturally transmitted information, expressed in behaviour and artefacts, spreads through populations, modifying selection acting back on populations. Drawing on three case studies, I will illustrate how this gene-culture coevolution has played a critical role in human evolution. These studies explore (i) the evolution of handedness, (ii) sexual selection with a culturally transmitted mating preference, and (iii) cultural niche construction and human evolution. These analyses shed light on how genes and culture shape each other, and on the significance of feedback mechanisms between biological and cultural processes.  相似文献   

10.
Many different crop species were selected for a common suite of ‘domestication traits’, which facilitates their use for studies of parallel evolution. Within domesticated rice (Oryza sativa), there has also been independent evolution of weedy strains from different cultivated varieties. This makes it possible to examine the genetic basis of parallel weed evolution and the extent to which this process occurs through shared genetic mechanisms. We performed comparative QTL mapping of weediness traits using two recombinant inbred line populations derived from crosses between an indica crop variety and representatives of each of the two independently evolved weed strains found in US rice fields, strawhull (S) and blackhull awned (B). Genotyping‐by‐sequencing provided dense marker coverage for linkage map construction (average marker interval <0.25 cM), with 6016 and 13 730 SNPs mapped in F5 lines of the S and B populations, respectively. For some weediness traits (awn length, hull pigmentation and pericarp pigmentation), QTL mapping and sequencing of underlying candidate genes confirmed that trait variation was largely attributable to individual loci. However, for more complex quantitative traits (including heading date, panicle length and seed shattering), we found multiple QTL, with little evidence of shared genetic bases between the S and B populations or across previous studies of weedy rice. Candidate gene sequencing revealed causal genetic bases for 8 of 27 total mapped QTL. Together these findings suggest that despite the genetic bottleneck that occurred during rice domestication, there is ample genetic variation in this crop to allow agricultural weed evolution through multiple genetic mechanisms.  相似文献   

11.
Mitochondrial function is achieved through the cooperative interaction of two genomes: one nuclear (nuDNA) and the other mitochondrial (mtDNA). The unusual transmission of mtDNA, predominantly maternal without recombination is predicted to affect the fitness of male offspring. Recent research suggests the strong sexual dimorphism in aging is one such fitness consequence. The uniparental inheritance of mtDNA results in a selection asymmetry; mutations that affect only males will not respond to natural selection, imposing a male‐specific mitochondrial mutation load. Prior work has implicated this male‐specific mutation load in disease and infertility, but new data from fruit flies suggests a prominent role for mtDNA in aging; across many taxa males almost invariably live shorter lives than females. Here we discuss this new work and identify some areas of future research that might now be encouraged to explore what may be the underpinning cause of the strong sexual dimorphism in aging. Editor's suggested further reading in BioEssays: Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations Abstract Mitochondrial manoeuvres: Latest insights and hypotheses on mitochondrial partitioning during mitosis in Saccharomyces cerevisiae Abstract Mitochondria and the culture of the Borg Abstract  相似文献   

12.
Although conflicting selection from different resources is thought to play a critical role in the evolution of specialized species, the prevalence of conflicting selection in generalists is poorly understood. Plants may experience conflicting selection on floral traits by different pollinators and between genders. Using artificial selection to increase phenotypic variation, we tested for conflicting and nonadditive selection on wild radish (Raphanus raphanistrum) flowers. To do this, we measured selection by each of the major pollinator taxa through both male and female fitness, and tested for a single-generation response to selection by a subset of these pollinators. We found some evidence for conflicting selection on anther exertion--sweat bees exerted stabilizing selection and larger bees selected for increased exertion. Stamen dimorphism was only under selection by honey bees, causing a response to selection in the next generation, and flower size was under similar selection by multiple pollinators. Selection differed significantly between genders for two traits, but there was no evidence for stronger selection through male fitness or for conflicting selection between genders. Our results suggest wild radish flowers can adapt to multiple pollinators, as we found little evidence for conflicting selection and no evidence for nonadditive selection among pollinators.  相似文献   

13.
Platelet aggregation and adenosine deaminase (ADA) activity were evaluated in pregnant women living with some disease conditions including hypertension, diabetes mellitus and human immunodeficiency virus infection. The subject population is consisted of 15 non‐pregnant healthy women [control group (CG)], 15 women with normal pregnancy (NP), 7 women with hypertensive pregnancy (HP), 10 women with gestational diabetes mellitus (GDM) and 12 women with human immunodeficiency virus‐infected pregnancy (HIP) groups. The aggregation of platelets was checked using an optical aggregometer, and serum ADA activity was determined using the colorimetric method. After the addition of 5 µM of agonist adenosine diphosphate, the percentage of platelet aggregation was significantly (p < 0·05) increased in NP, HP, GDM and HIP groups when compared with the CG, while the addition of 10 µM of the same agonist caused significant (p < 0·05) elevations in HP, GDM and HIP groups when compared with CG. Furthermore, ADA activity was significantly (p < 0·05) enhanced in NP, HP, GDM and HIP groups when compared with CG. In this study, the increased platelet aggregation and ADA activity in pregnancy and pregnancy‐associated diseases suggest that platelet aggregation and ADA activity could serve as peripheral markers for the development of effective therapy in the maintenance of homeostasis and some inflammatory process in these pathophysiological conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Extremophiles are microorganisms that thrive under extreme conditions such as temperatures above 65°C, pHs below 4 or above 10, salt concentrations above 0.5 m, or pressures of 600 atm. While studies of enzymes either isolated from extremophiles, or generated using site-specific mutagenesis, or adapted by in vivo or in vitro selection have established a precedent for the engineering and application of proteins at extreme conditions, generalization of the approaches to more complex multimolecular or multitask systems has remained elusive. Here we demonstrate that a significantly more complex system—a bacteriophage—can over a number of generations be adapted to tolerate a hostile and unnatural environment. An in vitro selection strategy was used to adapt phage to urea, a protein denaturing agent. As the concentration of urea employed in selections over 20 generations was gradually increased from 5 to 9 m, the surviving phages steadily improved their tolerance, finally achieving a greater than 350-fold stability enhancement over the original population.Correspondence to: J. Yin  相似文献   

15.
From an evolutionary perspective, social behaviours are those which have fitness consequences for both the individual that performs the behaviour, and another individual. Over the last 43 years, a huge theoretical and empirical literature has developed on this topic. However, progress is often hindered by poor communication between scientists, with different people using the same term to mean different things, or different terms to mean the same thing. This can obscure what is biologically important, and what is not. The potential for such semantic confusion is greatest with interdisciplinary research. Our aim here is to address issues of semantic confusion that have arisen with research on the problem of cooperation. In particular, we: (i) discuss confusion over the terms kin selection, mutualism, mutual benefit, cooperation, altruism, reciprocal altruism, weak altruism, altruistic punishment, strong reciprocity, group selection and direct fitness; (ii) emphasize the need to distinguish between proximate (mechanism) and ultimate (survival value) explanations of behaviours. We draw examples from all areas, but especially recent work on humans and microbes.  相似文献   

16.
Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and ‘non-canonical’ silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid–solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials.  相似文献   

17.
The relative contributions of ancestry, chance, and past and ongoing election to variation in one adaptive (larval feeding rate) and one seemingly nonadaptive (pupation height) trait were determined in populations ofDrosophila melanogaster adapting to either low or high larval densities in the laboratory. Larval feeding rates increased rapidly in response to high density, and the effects of ancestry, past selection and chance were ameliorated by ongoing selection within 15–20 generations. Similarly, in populations previously kept at high larval density, and then switched to low larval density, the decline of larval feeding rate to ancestral levels was rapid (15-20 generations) and complete, providing support for a previously stated hypothesis regarding the costs of faster feeding inDrosophila larvae. Variation among individuals was the major contributor to variation in pupation height, a trait that would superficially appear to be nonadaptive in the environmental context of the populations used in this study because it did not diverge between sets of populations kept at low versus high larval density for many generations. However, the degree of divergence among populations (FST) for pupation height was significantly less than expected for a selectively neutral trait, and we integrate results from previous studies to suggest that the variation for pupation height among populations is constrained by stabilizing selection, with a flat, plateau-like fitness function that, consequently, allows for substantial phenotypic variation within populations. Our results support the view that the genetic imprints of history (ancestry and past selection) in outbreeding sexual populations are typically likely to be transient in the face of ongoing selection and recombination. The results also illustrate the heuristic point that different forms of selection-for example directional versus stabilizing selection—acting on a trait in different populations may often not be due to differently shaped fitness functions, but rather due to differences in how the fitness function maps onto the actual distribution of phenotypes in a given population. We discuss these results in the light of previous work on reverse evolution, and the role of ancestry, chance, and past and ongoing selection in adaptive evolution.  相似文献   

18.
Fischer N  Kandt C 《Proteins》2011,79(10):2871-2885
Powered by proton-motive force, the inner membrane translocase AcrB is the engine of the AcrAB-TolC efflux pump in Escherichia coli. As proton conduction in proteins occurs along hydrogen-bonded networks of polar residues and water molecules, knowledge of the protein-internal water distribution and water-interacting residues allows drawing conclusions to possible pathways of proton conduction. Here, we report a series of 6× 50 ns independent molecular dynamics simulations of asymmetric AcrB embedded in a phospholipid/water environment. Simulating each monomer in its proposed protonation state, we calculated for each trans-membrane domain the average water distribution, identified residues interacting with these waters and quantified each residue's frequency of water hydrogen bond contact. Combining this information we find three possible routes of proton transfer connecting a continuously hydrated region of known key residues in the TMD interior to bulk water by one cytoplasmic and up to three periplasm water channels in monomer B and A. We find that water access of the trans-membrane domains is regulated by four groups of residues in a combination of side chain re-orientations and shifts of trans-membrane helices. Our findings support a proton release event via Arg971 during the C intermediate or in the transition to A, and proton uptake occurring in the A or B state or during a so far unknown intermediate in between B and C where cytoplasmic water access is still possible. Our simulations suggest experimentally testable hypotheses, which have not been investigated so far.  相似文献   

19.
Considerable debate has accompanied efforts to integrate the selective impacts of environmental stresses into models of life-history evolution. This study was designed to determine if different environmental stresses have consistent phenotypic effects on life-history characters and whether selection under different stresses leads to consistent evolutionary responses. We created lineages of a wild mustard (Sinapis arvensis) that were selected for three generations under five stress regimes (high boron, high salt, low light, low water, or low nutrients) or under near-optimal conditions (control). Full-sibling families from the six selection histories were divided among the same six experimental treatments. In that test generation, lifetime plant fecundity and six phenotypic traits were measured for each plant. Throughout this greenhouse study, plants were grown individually and stresses were applied from the early seedling stage through senescence. Although all stresses consistently reduced lifetime fecundity and most size- and growth-related traits, different stresses had contrasting effects on flowering time. On average, stress delayed flowering compared to favorable conditions, although plants experiencing low nutrient stress flowered earliest and those experiencing low light flowered latest. Contrary to expectations of Grime's triangle model of life-history evolution, this ruderal species does not respond phenotypically to poor environments by flowering earlier. Most stresses enhanced the evolutionary potential of the study population. Compared with near-optimal conditions, stresses tended to increase the opportunity for selection as well as phenotypic variance, although both of these quantities were reduced in some stresses. Rather than favoring traits characteristic of stress tolerance, such as slow growth and delayed reproduction, phenotypic selection favored stress-avoidance traits: earlier flowering in all five stress regimes and faster seedling height growth in three stresses. Phenotypic correlations reinforced direct selection on these traits under stress, leading to predicted phenotypic change under stress, but no significant selection in the control environment. As a result of these factors, selection under stress resulted in an evolutionary shift toward earlier flowering. Environmental stresses may drive populations of ruderal plant species like S. arvensis toward a stress-avoidance strategy, rather than toward stress tolerance. Further studies will be needed to determine when selection in stressful environments leads to these alternative life-history strategies.  相似文献   

20.
A wild-type population of Drosophila melanogaster was used to assess the impact of a known deleterious mutation, nub(1), when it had (1) evolved for up to 180 generations with the mutation or (2) recently had the same mutant allele introgressed into it. Relative to this benchmark, we observed much stronger initial fitness depression in males (-74%) than in females (-38%) and also relatively greater fitness recovery by evolved males (+55%) than females (+17%). Experimental assays revealed amelioration in both juvenile and adult fitness and suggested that the greater relative recovery of male fitness was from gains through sexual selection. These evolutionary changes in male fertility depended on pairing with their coevolved mates for both mate choice and post-copulatory components of sexual selection. Without replication at the population level, these results are used to motivate a general hypothesis rather than definitively test it: Differences in reproductive optima may generally skew mutational effects towards the more strongly sexually-selected sex due to genic capture and condition dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号