首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new cloning system is described, which allows the construction of large-insert fosmid libraries in Escherichia coli and the transfer of the recombinant libraries to the extreme thermophile Thermus thermophilus via natural transformation. Libraries are established in the thermophilic host by site-specific chromosomal insertion of the recombinant fosmids via single crossover or double crossover recombination at the T. thermophilus pyr locus. Comparative screening of a fosmid library constructed from genomic DNA from the thermophilic spirochaete, Spirochaeta thermophila, for clones expressing thermoactive xylanase activity revealed that 50% of the fosmids that conferred xylanase activity upon the corresponding T. thermophilus transformants did not give rise to xylanase-positive E. coli clones, indicating that significantly more S. thermophila genes are functionally expressed in T. thermophilus than in E. coli. The novel T. thermophilus host/vector system may be of value for the construction and functional screening of recombinant DNA libraries from individual thermophilic or extremely thermophilic organisms as well as from complex metagenomes isolated from thermophilic microbial communities.  相似文献   

2.
3.
【目的】利用宏基因组学技术挖掘土壤微生物来源的新型酯酶。【方法】构建土壤微生物宏基因组文库,利用三丁酸甘油酯平板法对所构建的文库进行筛选,并对阳性克隆中鉴定出的酯酶基因进行异源表达和生物化学特性分析。【结果】通过筛选文库中的12万个克隆,获得了一个阳性克隆,对克隆中的DNA片段进行序列分析,发现了一个可能的酯酶基因,通过研究其表达产物,确定其最适pH为9.0,最适反应温度为56°C,在90°C下仍可保持20%的酶活性;能专一性水解短链脂类,对长链脂类无水解作用;对一定浓度范围内的有机试剂如二甲基亚砜、甲醇、乙醇有较好的耐受性,尤其当二甲基亚砜含量为10%(体积比)时,相对酶活可提高44%。【结论】不依赖于微生物可培养性的宏基因组学技术可以发现新的活性酶,本研究获得的对高温、有机试剂有较好耐受性的酯酶ESTYN1具有在工业生产中应用的潜力。  相似文献   

4.
The cellulases cellobiohydrolase 1 (CBH 1) and endoglucanase 1 (EG 1) from the fungus Trichoderma reesei are closely related with 40% sequence identity and very similar in structure. In CBH 1 the active site is enclosed by long loops and some antiparallel β-strands forming a 40 Å long tunnel, whereas in EG 1 part of those loops are missing so that the enzyme has a more common active site groove. Both enzymes were immobilized on silica and these materials were used as chiral stationary phases for chromatographic separation of the enantiomers of two chiral drugs, propranolol and alprenolol. The CBH 1 phase showed much better resolution than did the EG 1 phase, suggesting that the tunnel structure of the protein may play an important role in the chiral separation. The chiral compounds were found to be competitive inhibitors of both enzymes when p-nitrophenyl lactoside (pNPL) was used as substrate. (S)-enantiomers showed stronger inhibitory effects and also longer retention time on the stationary phases than the (R)-enantiomers. The consistency between kinetic data and retention on the stationary phases clearly shows that the enzymatically active sites of CBH 1 and EG 1 are involved in chiral recognition.  相似文献   

5.
Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provide researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation.  相似文献   

6.
Antibody specific to Trichoderma reesei cellulase (65 kDa, isoelectric point, pI, 7.7) shows immuno-cross reactivity with acidic hydrolase complexes containing other cellulases, (pIapp. 3.4–4.5) when tested under conditions of 2D-electrophoresis (1st dim. PAGIF, 2nd dim. SDS-PAGE) together with Western blotting. Degradation pattern of 14C(U)-labeled G1–G5 of the 65 kDa cellulase was followed by a 2-directional oligodextrin mapping procedure.Using preparative IEF, homologous antigen portions were detected in cellulases present within acidic hydrolase complexes showing mainly identical molar weight (Mr 65 kDa and 57 kDa) but a range of charge (pI 3.4–4.5). The pattern of acidic cellulases as found after analytical 2D-electrophoresis was reconstituted by preparative IEF (pIapp. 2.7–5.1) followed by SDS-PAGE separation. Homogeneous fractions (upon IEF) gave up to 8 different polypeptides per complex upon SDS-PAGE (Mr 70−20 kDa). Charge heterogeneity of individual acidic hydrolase complexes upon IEF is discussed as one reason for ‘multiplicity’ of acidic cellulases.  相似文献   

7.
We have isolated a number of alkaliphilic Bacillus that produce alkaline exoenzymes and found a possible use for alkaline cellulase (carboxymethylcellulase) as an additive for improving the cleaning effect of detergents. Enzymatic properties of some candidate cellulases fulfilled the essential requirements for enzymes to be used practically in laundry detergents. Here I describe the properties and possible catalytic mechanism of the hydrolytic reaction and the gene for the industrial alkaline cellulase produced by one of the isolates, Bacillus sp. KSM-635. Received: October 4, 1996 / Accepted: December 2, 1996  相似文献   

8.
Cellulases involved in the hydrolysis of cellulose and plays a vital role in different industries like textile, detergent paper and Feed industry. Cellulases have been a prospective target for research by both the academic and industrial sectors because of the intricacy of the enzyme system and the enormous industrial potential. In the present work Thermomyces dupontii, which had previously been isolated and recorded as a promising cellulase producer were used. Both endoglucanases and betaglucosidases were purified to its homogeneity by ammonium sulfate followed by anion exchange and gel filtration chromatography. The recovery and purification fold for endoglucanases and betaglucosidases were 13.7, 10.7 % and 5.9, 2.7, respectively. The molecular weight of endoglucanases and betaglucosidases were estimated as 37 and 66 kDa on SDS-PAGE. Upon kinetic analysis the purified endoglucanases and betaglucosidases showed Km 0.63; 28.56 mg/ml and Vmax 82; 80 U/ml/min, respectively. Characterization revealed that enzyme was found to be acidophilic cellulase having optimal pH of 5.5 and 70 ?C. Furthermore, cellulases were accelerated in the presence of Ca2+ and EDTA. The cellulases had activation energy (Ea) of ?44.55; ?50.02 kJ/mol for carboxy-methyl-cellulose hydrolysis and Enthalpy (ΔH) 42.20; 47.70 kJ/mol and entropy ΔS ?5.1 and ?5.7 kJ/mol for EG and BGL, respectively. In addition to this the enzyme had a secondary structure of protein as represented by FTIR spectrum The current study suggested that purified cellulases can be used as a detergent additive to improve washing. Furthermore, it shows the biostoning ability when applied on jean fabric.  相似文献   

9.
Recent analysis of the endA cellulase gene from Ruminococcus flavefaciens 17 has revealed that it encodes a product of 759 amino acids that provides the first example of a multidomain cellulase from a Ruminococcus sp. Following the family 5 catalytic domain in the predicted EndA enzyme is a 282 amino acid domain of unknown function for which no close relationship was found to other protein sequences. However, the C-terminal sequences of EndA contain a 34 amino acid threonine-rich linker connected to an 81 amino acid region, both of which show strong similarities to sequences present in two xylanases from R. flavefaciens 17. A distant relationship is evident between regions of the 80 amino acid sequences of EndA, XynD and XynB and the duplicated 23 amino acid dockerin sequences found in cellulolytic Clostridium sp., suggesting that as in Clostridium sp. these sequences could mediate the binding of enzymatic polypeptides to another component in the cell surface enzyme complex of R. flavefaciens.  相似文献   

10.
A metagenomic cosmid library was prepared in Escherichia coli from DNA extracted from the contents of rabbit cecum and screened for cellulase activities. Eleven independent clones expressing cellulase activities (four endo-β-1,4-glucanases and seven β-glucosidases) were isolated. Subcloning and sequencing analysis of these clones identified 11 cellulase genes; the encoded products of which shared less than 50% identities and 70% similarities to cellulases in the databases. All four endo-β-1,4-glucanases and all seven β-glucosidases, respectively, belonged to glycosyl hydrolase family 5 (GHF 5) and family 3 (GHF 3) and formed two separate branches in the phylogenetic tree. Ten of the 11 cloned cellulases exhibited highest activities at pH 5.5 ∼ 7.0 and 40 ∼ 55°C, a condition similar to that in the rabbit cecum. All the four endo-β-1,4-glucanases could hydrolyze a wide range of β-1,4-, β-1,4/β-1,3- or β-1,3/β-1,6-linked polysaccharides. One endo-β-1, 4-glucanase gene, umcel5G, was overexpressed in E. coli, and the purified recombinant enzyme was characterized in detail. The enzymes cloned in this work represented at least some of the cellulases operating efficiently in the rabbit cecum. This work provides the first snapshot on the cellulases produced by bacteria in rabbit cecum.  相似文献   

11.
Abstract A cellulase-containing fraction present in the culture fluid of Trichoderma reesei grown on cellulose was obtained by fractionated centrifugation. The buoyant density of this fraction was D = 1.060 g/ml. Its ultrastructural properties, as detected by transmission electron microscopy, are given. The fraction consists of membrane vesicles attached to a carbohydrate polymer. This polymer is positive to Ruthenium red staining.
The effect of urea on the extraction and separation of acidic cellulases from this fraction is described. Linear gradient gels for both urea (up to 8.0 M urea) and polyacrylamide gels (up to 30%) were used to determine adequate separation conditions for isoelectric focusing (IEF) in a polyacrylamide gel matrix. The effect of urea on the extraction and separation conditions was tested by titration curves. In the presence of 6.0−8.0 M urea, the main cellulase-containing hydrolase complex (pIapp4.2) from this fraction is split into 3 isoenzymes and a further cellulase (pI 5.65).  相似文献   

12.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

13.
A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridiumpasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose.  相似文献   

14.
Abstract An extracellular cellulase which was highly active in solubilizing the highly hydrogen bond-ordered cellulose in cotton fibre was found in a culture filtrate of the anaerobic fungus, Neocallimastix frontalis , isolated from the rumen of a sheep. The cellulase was several-fold more active in solubilizing cotton fibre per unit of endo-1,4-β-glucanase than the cellulase of the aerobic fungus Trichoderma reesei mutant strain C-30, which is one of the most active cellulases isolated so far.  相似文献   

15.
The construction of a cosmid library from the biomass produced in an enriched Sequencing Fed-Batch Reactor allowed the isolation of a new lipase by functional screening. The open reading frame of 928 bp encoded a polypeptide of 308 amino acids with a molecular mass of 32.6 kDa. The amino acid sequence analysis revealed the presence of the conserved pentapeptide GXSXG essential for lipase activity. Alignment with known sequences of proteins showed no more than 52% identity with different lipases, confirming the discovery of a novel gene sequence. The lipase was cloned and expressed in Streptomyces lividans and further purified by a combination of hydrophobic interaction and size-exclusion chromatography. Spectrophotometric assays with different p-nitrophenyl esters demonstrated a preference for long-length acyl chains, especially p-nitrophenylmyristate (C14). Moreover, the enzyme presented an optimal activity at 60°C and at alkaline pH of 10.5.  相似文献   

16.

Background

In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects.

Results

By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre.

Conclusions

As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-356) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Fuelled by the advent and subsequent development of next generation sequencing technologies, metagenomics became a powerful tool for the analysis of microbial communities both scientifically and diagnostically. The biggest challenge is the extraction of relevant information from the huge sequence datasets generated for metagenomics studies. Although a plethora of tools are available, data analysis is still a bottleneck.

Results

To overcome the bottleneck of data analysis, we developed an automated computational workflow called RIEMS – Reliable Information Extraction from Metagenomic Sequence datasets. RIEMS assigns every individual read sequence within a dataset taxonomically by cascading different sequence analyses with decreasing stringency of the assignments using various software applications. After completion of the analyses, the results are summarised in a clearly structured result protocol organised taxonomically. The high accuracy and performance of RIEMS analyses were proven in comparison with other tools for metagenomics data analysis using simulated sequencing read datasets.

Conclusions

RIEMS has the potential to fill the gap that still exists with regard to data analysis for metagenomics studies. The usefulness and power of RIEMS for the analysis of genuine sequencing datasets was demonstrated with an early version of RIEMS in 2011 when it was used to detect the orthobunyavirus sequences leading to the discovery of Schmallenberg virus.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0503-6) contains supplementary material, which is available to authorized users.  相似文献   

18.
Two novel lipase genes RlipE1 and RlipE2 which encoded 361- and 265-amino acid peptides, respectively, were recovered from a metagenomic library of the rumen microbiota of Chinese Holstein cows. A BLAST search revealed a high similarity (90%) between RlipE2 and a carboxylesterase from Thermosinus carboxydivorans Nor1, while there was a low similarity (below 50%) between RlipE1 and other lipases. Phylogenetic analysis indicated that RlipE2 clustered with the lipolytic enzymes from family V while RlipE1 clustered with six other putative bacterial lipases which might constitute a new subfamily. The recombinant lipases were thermally unstable and retained 60% activity over a pH range of 6.5-8.5. Substrate specificity assay indicated that both enzymes had higher hydrolytic activity toward laurate (C12), palmitate (C16) and stearate (C18). The novel phylogenetic affiliation and high specificity of both enzymes for long-chain fatty acid make them interesting targets for manipulation of rumen lipid metabolism.  相似文献   

19.
Summary Mesocarp protoplasts were isolated from mature avocado fruits (Persea americana cv. Hass) at varying stages of propylene-induced ripening. Qualitative changes in the pattern of radiolabel incorporation into polypeptides were observed in cells derived from fruit at the different stages. Many of these differences correlate with those observed during radiolabeling of polypeptides from fresh tissue slices prepared from unripe and ripe fruit. Protoplasts isolated from fruit treated with propylene for one day or more were shown to synthesize cellulase (endo-ß-1,4-glucanase) antigen, similar to the intact propylene-treated fruit. These results suggest that the isolated protoplasts retain at least some biochemical characteristics of the parent tissue. The cells may also be used in transient gene expression assays. Protoplasts isolated from preclimacteric and climacteric fruit were equally competent in expressing a chimeric test gene, composed of the CaMV 35S RNA promoter fused to the bacterial chloramphenicol acetyltransferase gene, which was introduced by electroporation.Abbreviations PCM Murashige and Skoog salts and growth factors, supplemented with 3% sucrose, 0.3 % glucose, 0.3% enzymatic casein hydrolysate, 0.5 M mannitol, and 5 mM CaCl2 - CAT chloramphenicol acetyltransferase  相似文献   

20.
Abstract A cellulase gene from Ruminococcus flavefaciens FD-1 had previously been cloned in Escherichia coli . The product of this gene, CelA, was purified from E. coli and characterised. This 39 kDa cellulase is antigenically related, and of similar mass, to a protein in R. flavefaciens . The enzyme has cellodextrinase activity with predominantly exo-type action. CelA activity was optimal at pH 6.5 and 41°C, and was inhibited in the presence of divalent metal cations. The K m and V max were determined as 0.68 mM and 1.89 μmol min−1 mg−1 of CelA, respectively. Cellobiose was the major end product of cellodextrin hydrolysis, and our results suggest that celluboise is competitive inhibitor of CelA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号