首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The 26S proteasome is a highly conserved multisubunit protease that degrades ubiquitinated proteins in eukaryotic cells. It comprises a 20S core particle and two 19S regulatory particles that are further divided into the lid and base complexes. The lid is a nine subunits complex that is structurally related to the COP9 signalosome and the eukaryotic initiation factor 3. Although the assembly pathway of the 20S and the base are well described, that of the lid is still unclear. In this study, we dissected the lid assembly using yeast lid mutant cells, rpn7-3, Δrpn9, and rpn12-1. Using mass spectrometry, we identified a number of lid subassemblies, such as Rpn3-Rpn7 pair and a lid-like complex lacking Rpn12, in the mutants. Our analysis suggests that the assembly of the lid is a highly ordered and multi-step process; first, Rpn5, 6, 8, 9, and 11 are assembled to form a core module, then a second module, consisting of Rpn3, 7, and Sem1, is attached, followed by the incorporation of Rpn12 to form the lid complex.  相似文献   

2.
The zinc cluster proteins Sut1 and Sut2 play a role in sterol uptake and filamentous growth in the budding yeast Saccharomyces cerevisiae. In this study, we show that they are also involved in mating. Cells that lack both SUT1 and SUT2 were defective in mating. The expression of the genes NCE102 and PRR2 was increased in the sut1 sut2 double deletion mutant suggesting that Sut1 and Sut2 both repress the expression of NCE102 and PRR2. Consistent with these data, overexpression of either SUT1 or SUT2 led to lower expression of NCE102 and PRR2. Furthermore, expression levels of NCE102, PRR2 and RHO5, another target gene of Sut1 and Sut2, decreased in response to pheromone. Prr2 has been identified as a mating inhibitor before. Here we show that overexpression of NCE102 and RHO5 also reduced mating. Our results suggest that Sut1 and Sut2 positively regulate mating by repressing the expression of the mating inhibitors NCE102, PRR2 and RHO5 in response to pheromone.  相似文献   

3.
V. Larionov  N. Kouprina  T. Karpova 《Gene》1984,28(2):229-235
The mitotic stabilities of hybrid plasmid Rcp21/11, which contains the replicator of yeast rDNA, have been compared for four yeast host strains of different origins. In two related strains, Saccharomyces cerevisiae A62-1G-P188 and 1A-P3812 from the Peterhof genetic stocks, the plasmid was much more stable than in strains DC5 and GRF18 from the USA stocks.The enhanced mitotic stability of Rcp21/11 in these two yeast strains is obviously attributable to a higher rate of integration of the plasmid into the chromosomal rDNA repeats of the hosts.The centromeric locus CEN3 was inserted into Rcp21/11 because it provides high mitotic and meiotic stability of plasmids with yeast replicators, due to an ordered distribution of plasmids throughout cell division. Using the new centromeric plasmid RcpCEN3, transformation of the four above-described yeast strains was carried out. It was found that, similarly to centromeric plasmids with other chromosomal replicators, RcpCEN3 remains in the cell as a single copy. In strains DC5, GRF18 and A62-1G-P188 the mitotic stability of RcpCEN3 was 20–50%, i.e., less than half that of plasmids containing locus CEN3 and other yeast repliiators, ars1, ars2 and the 2μ DNA replicator. The mitotic stability of RcpCEN3 in strains 1A-P3812 (from the Peterhof genetic stocks) for individual clones reached 85%, i.e. close to that of the other plasmids. Genetic analysis showed that the capacity of strain 1A-P3812 to stably retain RcpCEN3 has a recessive polygenic character. We suggest that the observed differences in mitotic stability of centromeric plasmid RcpCEN3 between various yeast strains reflects the differences in activity of rDNA replicator in these strains. The nature of extrachromosomal rDNA circles, found in some strains of S. cerevisiae, is discussed from the point of view of the data.  相似文献   

4.
Polo-like kinases (PLKs) control several aspects of eukaryotic cell division and DNA damage response. Remarkably, PLKs are overexpressed in several types of cancer, being therefore a marker of bad prognosis. As such, specific PLK kinase activity inhibitors are already used in clinical trials and the regulation of PLK activation is a relevant topic of cancer research. Phosphorylation of threonine residues in the T-loop of the kinase domain is pivotal for PLKs activation. Here, we show that T238A substitution in the T-loop reduces the kinase activity of Cdc5, the only PLK in Saccharomyces cerevisiae, with minor effect on cell growth in unperturbed conditions. However, the cdc5-T238A cells have increased rate of chromosome loss and gross chromosomal rearrangements, indicating altered genome stability. Moreover, the T238A mutation affects timely localization of Cdc5 to the spindle pole bodies and blocks cell cycle restart after one irreparable double-strand break. In cells responding to alkylating agent metylmethane sulfonate (MMS), the cdc5-T238A mutation reduces the phosphorylation of Mus81-Mms4 resolvase and exacerbates the MMS sensitivity of sgs1Δ cells that accumulate Holliday junctions. Of importance, the previously described checkpoint adaptation defective allele, cdc5-ad does not show reduced kinase activity, defective Mms4 phosphorylation and genetic interaction with sgs1Δ. Our data define the importance of regulating Cdc5 activity through T-loop phosphorylation to preserve genome integrity and respond to DNA damage.  相似文献   

5.
To further elucidate the impact of fermentative stress on Saccharomyces cerevisiae wine strains, we have here evaluated markers of oxidative stress, oxidative damage and antioxidant response in four oenological strains of S. cerevisiae, relating these to membrane integrity, ethanol production and cell viability during fermentation in high-sugar-containing medium. The cells were sampled at different fermentation stages and analysed by flow cytometry to evaluate membrane integrity and accumulation of reactive oxygen species (ROS). At the same time, catalase and superoxide dismutase activities, trehalose accumulation, and protein carbonylation and degradation were measured. The results indicate that the stress conditions occurring during hypoxic fermentation in high-sugar-containing medium result in the production of ROS and trigger an antioxidant response. This involves superoxide dismutase and trehalose for the protection of cell structures from oxidative damage, and protein catabolism for the removal of damaged proteins. Cell viability, membrane integrity and ethanol production depend on the extent of oxidative damage to cellular components. This is, in turn, related to the ‘fitness’ of each strain, which depends on the contribution of individual cells to ROS accumulation and scavenging. These findings highlight that the differences in individual cell resistances to ROS contribute to the persistence of wine strains during growth under unfavourable culture conditions, and they provide further insights into our understanding of yeast behaviour during industrial fermentation.  相似文献   

6.
Two distinct endonucleases from Saccharomyces cerevisiae, specific for apurinic/apyrimidinic sites (AP-endonucleases A and B), have been extensively purified and characterized. Both are free from unspecific and ultraviolet-specific endonucleases and exonucleases. The two enzymes are monomeric proteins of around 24 000 daltons. Both are sensitive to ionic strength and most active in the presence of 150 and 100 mM NaCl for AP-endonucleases A and B, respectively. They are not absolutely dependent on divalent cations, since they are insensitive to EDTA, although AP-endonuclease A is activated by Ca2+ or Mg2+ and AP-endonuclease B by Mg2+ only. ATP inhibits the enzymes. AP-endonuclease A reacts optimally between pH 6 and 8, and AP-endonuclease B at pH 8. AP-endonuclease A is more stable at 60°C (half-life of 17 min) than B (half-life of 4 min). AP-endonucleuase A is insensitive to N-ethylmaleimide or ρ-chloromercuribenzoate. AP-endonuclease B is also insensitive to N-ethylmaleimide, but ρ-chloromercuribenzoate inhibits its activity.  相似文献   

7.
In cultures of the mit? mutant strain Mb12 of Saccharomyces cerevisiae (carrying a mutation in the oli2 gene), 70% of the cells are petite mutants. More than 80% of the petites from Mb12 contain a particular mtDNA segment, denoted BB5, that is 880 bp long and carries a single MboI site. Thus, in cultures of Mb12, about 56% of the cells are petites containing the defective BB5 mtDNA genome, and only 30% are mit? cells containing parental Mb12 mtDNA. The BB5 mtDNA segment is also found in petites arising from the wild-type strain J69-1B (from which Mb12 was derived), but in this case mtDNA from only five out of 24 petites produced an 880 bp band after MboI digestion. Since J69-1B cultures carry a petite frequency of about 5%, approximately 1% of cells in J69-1B cultures contain the BB5 mtDNA segment. The difference between Mb12 and J69-1B cultures is reflected in the MboI digestion patterns of the respective mtDNAs. While Mb12 mtDNA contains a grossly superstoicheiometric 880 bp MboI fragment, the corresponding fragment in J69-1B mtDNA cannot be seen on stained gels, but can be readily visualized in Southern blots hybridized to a 32P-labelled DNA probe obtained from the 880 bp MboI fragment. The BB5 mtDNA segment was shown to contain the oril sequence (one of several very similar sequences in wild-type mtDNA thought to act as origins of replication of mtDNA) which confers the genetic property of very high suppressiveness on petites carrying this mtDNA. The efficient replication of BB5 mtDNA may contribute to its abundance in Mb12 cultures. Nevertheless, other factors must operate to influence the abundance of the BB5 mtDNA segment in cultures of different strains, the most important of which is likely to be the rate of excision of this mtDNA segment from the parental mtDNA genome.  相似文献   

8.
9.
10.
In order to identify genes involved in complex diseases, it is crucial to study the genetic interactions at the systems biology level. By utilizing modern high throughput microarray technology, it has become feasible to obtain gene expressions data and turn it into knowledge that explains the regulatory behavior of genes. In this study, an unsupervised nonlinear model was proposed to infer gene regulatory networks on a genome-wide scale. The proposed model consists of two components, a robust correlation estimator and a nonlinear recurrent model. The robust correlation estimator was used to initialize the parameters of the nonlinear recurrent curve-fitting model. Then the initialized model was used to fit the microarray data. The model was used to simulate the underlying nonlinear regulatory mechanisms in biological organisms. The proposed algorithm was applied to infer the regulatory mechanisms of the general network in Saccharomyces cerevisiae and the pulmonary disease pathways in Homo sapiens. The proposed algorithm requires no prior biological knowledge to predict linkages between genes. The prediction results were checked against true positive links obtained from the YEASTRACT database, the TRANSFAC database, and the KEGG database. By checking the results with known interactions, we showed that the proposed algorithm could determine some meaningful pathways, many of which are supported by the existing literature.  相似文献   

11.
12.
Based on the biochemical kinetics of DNA replication and mutagenesis, including misincorporation and correction, a model has been developed for studying the relationships among the mutation rate (u), the G + C content of the sequence (f), and the G + C proportion in the nucleotide precursor pool (N). Also a measure for the next-nucleotide effect, called the maximum capacity of the next-nucleotide effect (MC), has been proposed. Under the normal physiological conditions of mammalian germ cells, our results indicate: (1) the equilibrium G + C content in a sequence is approximately equal to the G + C proportion in the nucleotide precursor pool, i.e., fN, which is independent of the next-nucleotide effect; (2) an inverted-V-shaped distribution of mutation rates with respect to G + C contents is predicted, when the next-nucleotide effect is week, i.e., MC ≈ 1; (3) the distribution becomes flatter (i.e., inverted-U-shaped) as MC increases, but the peak at 50% GC is still observed when MC < 2; and (4) the peak disappears when MC > 2.8, that is, when the next-nucleotide effect becomes strong. Our results suggest that changes in the relative concentrations of nucleotide precursors can cause variations among genes both in mutation rate and in G + C content and that compositional isochores (DNA segments with a homogeneous G + C content) can arise in a genome due to differences in replication times of DNA segments. Correspondence to: W.-H. Li  相似文献   

13.
Yen1 is a nuclease identified in Saccharomyces cerevisiae that cleaves the Holliday junction (HJ) intermediate formed during homologous recombination. Alternative routes to disjoin HJs are performed by the Mus81/Mms4- and Sgs1/Top3/Rmi1-complexes. Here, we investigate the role of the Yen1 protein in the yeast Kluyveromyces lactis. We demonstrate that both yen1 mus81 and yen1 sgs1 double mutants displayed negative genetic interactions in the presence of DNA-damaging chemicals. To test if these phenotypes required the catalytic activity of Yen1, we introduced point mutations targeting the catalytic site of Yen1, which abolished the nuclease activity in vitro. Remarkably, catalytically inactive Yen1 did not exacerbate the hydroxyurea sensitivity of the sgs1Δ strain, which the yen1Δ allele did. In addition, overexpression of catalytically inactive Yen1 partially rescued the DNA damage sensitivity of both mus81 and sgs1 mutant strains albeit less efficiently than WT Yen1. These results suggest that Yen1 serves both a catalytic and non-catalytic role in its redundant function with Mus81 and Sgs1. Diploids lacking Mus81 had a severe defect in sporulation efficiency and crossover frequency, but diploids lacking both Mus81 and Yen1 showed no further reduction in spore formation. Hence, Yen1 had no evident role in meiosis. However, overexpression of WT Yen1, but not catalytically inactive Yen1 partially rescued the crossover defect in mus81/mus81 mutant diploids. Yen1 is a member of the RAD2/XPG-family of nucleases, but genetic analyses revealed no genetic interaction between yen1 and other family members (rad2, exo1 and rad27). In addition, yen1 mutants had normal nonhomologous end-joining efficiency. We discuss the similarities and differences between K. lactis Yen1 and Yen1/GEN1 from other organisms.  相似文献   

14.
Climate change, sea level rise, and human freshwater demands are predicted to result in elevated temperature and salinity variability in upper estuarine ecosystems. Increasing levels of environmental stresses are known to induce the cellular stress response (CSR). Energy for the CSR may be provided by an elevated overall metabolic rate. However, if metabolic rate is constant or lower under elevated stress, energy for the CSR is taken from other physiological processes, such as growth or reproduction. This study investigated the examined energetic responses to the combination of temperature and salinity variability during a multigenerational exposure of partheogenetically reproducing Daphnia pulex. We raised D. pulex in an orthogonal combination of daily fluctuations in temperature (15, 15–25, 15–30 °C) and salinity (0, 0–2, 0–5). Initially metabolic rates were lower under all variable temperature and variable salinity treatments. By the 6th generation there was little metabolic variation among low and intermediate temperature and salinity treatments, but metabolic suppression persisted at the most extreme salinity. When grown in the control condition for the 6th generation, metabolic suppression was only observed in D. pulex from the most extreme condition (15–30 °C, 0–5 salinity). Generation time was influenced by acclimation temperature but not salinity and was quickest in specimens reared at 15–25 °C, likely due to Q10 effects at temperatures closer to the optima for D. pulex, and slowest in specimens reared at 15–30 °C, which may have reflected elevated CSR. Acute tolerance to temperature (LT50) and salinity (LC50) were both highest in D. pulex acclimated to 15–30 °C and salinity 0. LT50 and LC50 increased with increasing salinity in specimens raised at 15 °C and 15–25 °C, but decreased with increasing salinity in specimens raised at 15–30 °C. Thus, increasing temperature confers cross-tolerance to salinity stress, but the directionality of synergistic effects of temperature and salinity depend on the degree of environmental variability. Overall, the results of our study suggest that temperature is a stronger determinant of metabolism, growth, and tolerance thresholds, and assessment of the ecological impacts of environmental change requires explicit information regarding the degree of environmental variability.  相似文献   

15.
A method to estimate predation rates of large predatory zooplankton, such as jellyfish and ctenophores, is outlined. Large plankton size allows direct visual tracking of the predator during the process of foraging. The presented method is novel in the sense that it measures predation rate of a specific individual plankton predator in situ.After prey has been evacuated from the gut of an individual predator, the predator is incubated in situ, and observed by SCUBA-divers who recapture the individual after a defined time. Given that this incubation time is shorter than prey digestion time, predation rate can be calculated as increase in gut content over time. Clearance rates for different prey can be calculated from predation rates and prey concentrations in the water, allowing accurate estimates of prey selectivity. Thus, the problem of unknown feeding history and feeding environment, which can otherwise be a problem in prey selectivity studies of in situ-captured predators, is circumvented. Benefits and limitations of the method are discussed.The method was applied to adult medusae of the common jellyfish Aurelia aurita. A large variation in number of captured prey was detected both among individual jellyfish and among the various oral arms and gastric pouches within individuals. Clearance rates varied strongly with prey type. The medusae selected large crustacean prey (cladocerans and copepods/copepodites) over echinoderm larvae and copepod nauplii. Prey distribution within the medusae indicates that both tentacles and oral arms were used as prey capturing sites. Food passage time from prey capturing organs to gastric pouches was estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号