首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insights into prion strains and neurotoxicity   总被引:7,自引:0,他引:7  
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that are caused by prions and affect humans and many animal species. It is now widely accepted that the infectious agent that causes TSEs is PrP(Sc), an aggregated moiety of the host-derived membrane glycolipoprotein PrP(C). Although PrP(C) is encoded by the host genome, prions themselves encipher many phenotypic TSE variants, known as prion strains. Prion strains are TSE isolates that, after inoculation into distinct hosts, cause disease with consistent characteristics, such as incubation period, distinct patterns of PrP(Sc) distribution and spongiosis and relative severity of the spongiform changes in the brain. The existence of such strains poses a fascinating challenge to prion research.  相似文献   

2.
Transmissible spongiform encepahalopathies (TSEs) are fatal diseases that damage the central nervous system. TSEs are unique in that they may be inherited, infectious or spontaneous. The central pathogenic agent is thought to be a conformationally distinct form (PrP(Sc;)) of the endogenous prion protein(PrP(c)), which is high in beta-sheet content and is resistant to proteases; infectivity is thought to involve formation of PrP(Sc) via imprinting of abnormal conformation on the normal form of the protein (PrP(c)) by seeds of PrP(Sc). A number of compounds found to inhibit the conversion of PrP(c) to PrP(Sc) have been proposed as therapeutics to halt TSEs.  相似文献   

3.
The conversion of the cellular prion protein (PrP(C)) into a misfolded isoform (PrP(TSE)) that accumulates in the brain of affected individuals is the key feature of transmissible spongiform encephalopaties (TSEs). Susceptibility to TSEs is influenced by polymorphisms of the prion gene suggesting that the presence of certain amino acid residues may facilitate the pathological conversion. In this work, we describe a quantitative, fast and reliable HPLC-MS method that allowed to demonstrate that in the brain of 109(Met/Ile) heterozygous bank voles infected with the mouse adapted scrapie strain 139A, there are comparable amounts of PrP(TSE) with methionine or isoleucine in position 109, suggesting that in this TSE model the two allotypes have similar rates of accumulation. This method can be easily adapted for the quantitative determination of PrP allotypes in the brain of other natural or experimental TSE models.  相似文献   

4.
Prion diseases, or transmissible spongiform encephalopathies (TSEs) are typically characterised by CNS accumulation of PrP(Sc), an aberrant conformer of a normal cellular protein PrP(C). It is thought PrP(Sc) is itself infectious and the causative agent of such diseases. To date, no chemical modifications of PrP(Sc), or a sub-population thereof, have been reported. In this study we have investigated whether chemical modification of amino acids within PrP might cause this protein to exhibit aberrant properties and whether these properties can be propagated onto unmodified prion protein. Of particular interest were post-translational modifications resulting from physiological conditions shown to be associated with TSE disease. Here we report that in vitro exposure of recombinant PrP to conditions that imitate the end effects of oxidative/nitrative stress in TSE-infected mouse brains cause the protein to adopt many of the physical characteristics of PrP(Sc). Most interestingly, these properties could be propagated onto unmodified PrP protein when the modified protein was used as a template. These data suggest that post-translational modifications of PrP might contribute to the initiation and/or propagation of prion protein-associated plaques in vivo during prion disease, thereby high-lighting novel biochemical pathways as possible therapeutic targets for these conditions.  相似文献   

5.
Transmission studies in transmissible spongiform encephalopathies (TSEs) have become increasingly important due to the possible transmission of bovine spongiform encephalopathy to humans resulting in new variant Creutzfeldt-Jacob disease. The horizontal transmission of scrapie, a TSE of sheep, is poorly understood. Possible sources of horizontal transmission are the submandibular and parotid salivary glands. TSEs like natural sheep scrapie are characterized by the conversion of a normal protease sensitive prion protein, PrP(c), to an abnormal protease resistant prion protein, PrP(Sc). Since the presence of PrP(Sc) is an indicator of disease, the salivary glands of scrapie-infected sheep were examined for the presence of PrP(Sc). Although PrP(c) mRNA was detected in the salivary glands, PrP(Sc) was not found in the salivary glands of scrapie-infected sheep. These data suggest that the salivary glands are unlikely sources of horizontal transmission of natural sheep scrapie.  相似文献   

6.
Propagation of the agents responsible for transmissible spongiform encephalopathies (TSEs) in cultured cells has been achieved for only a few cell lines. To establish efficient and versatile models for transmission, we developed neuroblastoma cell lines overexpressing type A mouse prion protein, MoPrP(C)-A, and then tested the susceptibility of the cells to several different mouse-adapted scrapie strains. The transfected cell clones expressed up to sixfold-higher levels of PrP(C) than the untransfected cells. Even after 30 passages, we were able to detect an abnormal proteinase K-resistant form of prion protein, PrP(Sc), in the agent-inoculated PrP-overexpressing cells, while no PrP(Sc) was detectable in the untransfected cells after 3 passages. Production of PrP(Sc) in these cells was also higher and more stable than that seen in scrapie-infected neuroblastoma cells (ScN2a). The transfected cells were susceptible to PrP(Sc)-A strains Chandler, 139A, and 22L but not to PrP(Sc)-B strains 87V and 22A. We further demonstrate the successful transmission of PrP(Sc) from infected cells to other uninfected cells. Our results corroborate the hypothesis that the successful transmission of agents ex vivo depends on both expression levels of host PrP(C) and the sequence of PrP(Sc). This new ex vivo transmission model will facilitate research into the mechanism of host-agent interactions, such as the species barrier and strain diversity, and provides a basis for the development of highly susceptible cell lines that could be used in diagnostic and therapeutic approaches to the TSEs.  相似文献   

7.
Current methods for diagnosing transmissible spongiform encephalopathies rely on the degradation of the cellular prion protein (PrP(C)) and the subsequent detection of the protease-resistant remnant of the pathological prion isoform PrP(Sc) by antibodies that react with all forms of PrP. We report on a monoclonal antibody, V5B2, raised against a peptide from the C-terminal part of PrP, which recognizes an epitope specific to PrP(Sc). In cryostat sections from Creutzfeldt-Jacob's disease (CJD) patients' brains, V5B2 selectively labels various deposits of PrP(Sc) without any pretreatment for removal of PrP(C). V5B2 does not bind to non-CJD brain samples or to recombinant PrP, either in its native or denatured form. Specificity for PrP is confirmed by a sandwich enzyme-linked immunosorbent assay utilizing V5B2, which discriminates between CJD and normal samples without proteinase K treatment, and by immunoprecipitation from CJD brain homogenate. The PrP(Sc)-specific epitope is disrupted by denaturation. We conclude that the C-terminal part of PrP in disease-associated PrP(Sc) aggregates forms a structural epitope whose conformation is distinct from that of PrP(C).  相似文献   

8.
The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, β-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a β-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.  相似文献   

9.
Transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of fatal neurodegenerative disorders of animals and humans. Human diseases include Creutzfeldt-Jakob (CJD) and Gerstmann-Straussler-Scheinker (GSSD) diseases, fatal familial insomnia, and Kuru. Human and animal TSEs share a common histopathology with a pathognomonic triad: spongiform vacuolation of the grey matter, neuronal death, glial proliferation, and, more inconstantly, amyloid deposition. According to the "protein only" hypothesis, TSEs are caused by a unique post-translational conversion of normal, host-encoded, protease-sensitive prion protein (PrP(sen) or PrP(C)) to an abnormal disease-associated isoform (PrP(res) or PrP(Sc)). To investigate the molecular mechanism of neurotoxicity induced by PrP(Sc) we developed a protocol to obtain millimolar amounts of soluble recombinant polypeptide encompassing the amino acid sequence 90-231 of human PrP (hPrP90-231). This protein corresponds to the protease-resistant prion protein fragment that originates after amino-terminal truncation. Importantly, hPrP90-231 has a flexible backbone that, similar to PrP(C), can undergo to structural rearrangement. This peptide, structurally resembling PrP(C), can be converted in a PrP(Sc)-like conformation, and thus represents a valuable model to study prion neurotoxicity. In this article we summarized our experimental evidence on the molecular and structural mechanisms responsible of hPrP90-231 neurotoxicity on neuroectodermal cell line SHSY5Y and the effects of some PrP pathogen mutations identified in familial TSE.  相似文献   

10.
The disease process for transmissible spongiform encephalopathies (TSEs), in one way or another, involves the conversion of a predominantly alpha-helical normal host-coded prion protein (PrP(C)) to an abnormally folded (predominantly beta sheet) protease resistant isoform (PrP(Sc)). Several alternative mechanisms have been proposed for this auto-catalytic process. Here the dynamical behavior of one of these models, the nucleated polymerization model, is studied by Monte Carlo discrete-event simulation of the explicit conversion reactions. These simulations demonstrate the characteristic dynamical behavior of this model for prion replication. Using estimates for the reaction rates and concentrations, time courses are estimated for concentration of PrP(Sc), PrP(Sc) aggregates, and PrP(C) as well as size distributions for the aggregates. The implications of these dynamics on protein misfolding cyclic amplification (PMCA) is discussed.  相似文献   

11.
An unidentified environmental reservoir of infectivity contributes to the natural transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) in sheep, deer, and elk. Prion infectivity may enter soil environments via shedding from diseased animals and decomposition of infected carcasses. Burial of TSE-infected cattle, sheep, and deer as a means of disposal has resulted in unintentional introduction of prions into subsurface environments. We examined the potential for soil to serve as a TSE reservoir by studying the interaction of the disease-associated prion protein (PrP(Sc)) with common soil minerals. In this study, we demonstrated substantial PrP(Sc) adsorption to two clay minerals, quartz, and four whole soil samples. We quantified the PrP(Sc)-binding capacities of each mineral. Furthermore, we observed that PrP(Sc) desorbed from montmorillonite clay was cleaved at an N-terminal site and the interaction between PrP(Sc) and Mte was strong, making desorption of the protein difficult. Despite cleavage and avid binding, PrP(Sc) bound to Mte remained infectious. Results from our study suggest that PrP(Sc) released into soil environments may be preserved in a bioavailable form, perpetuating prion disease epizootics and exposing other species to the infectious agent.  相似文献   

12.
One of the major pathological hallmarks of transmissible spongiform encephalopathies (TSEs) is the accumulation of a pathogenic (scrapie) isoform (PrP(Sc)) of the cellular prion protein (PrP(C)) primarily in the central nervous system. The synthetic prion peptide PrP106-126 shares many characteristics with PrP(Sc) in that it shows PrP(C)-dependent neurotoxicity both in vivo and in vitro. Moreover, PrP106-126 in vitro neurotoxicity has been closely associated with the ability to form fibrils. Here, we studied the in vivo neurotoxicity of molecular variants of PrP106-126 toward retinal neurons using electroretinographic recordings in mice after intraocular injections of the peptides. We found that amidation and structure relaxation of PrP106-126 significantly reduced the neurotoxicity in vivo. This was also found in vitro in primary neuronal cultures from mouse and rat brain. Thioflavin T binding studies showed that amidation and structure relaxation significantly reduced the ability of PrP106-126 to attain fibrillar structures in physiological salt solutions. This study hence supports the assumption that the neurotoxic potential of PrP106-126 is closely related to its ability to attain secondary structure.  相似文献   

13.
Kuwata K  Li H  Yamada H  Legname G  Prusiner SB  Akasaka K  James TL 《Biochemistry》2002,41(41):12277-12283
A crucial step for transformation of the normal cellular isoform of the prion protein (PrP(C)) to the infectious prion protein (PrP(Sc)) is thought to entail a previously uncharacterized intermediate conformer, PrP*, which interacts with a template PrP(Sc) molecule in the conversion process. By carrying out (15)N-(1)H two-dimensional NMR measurements under variable pressure on Syrian hamster prion protein rPrP(90-231), we found a metastable conformer of PrP(C) coexisting at a population of approximately 1% at pH 5.2 and 30 degrees C, in which helices B and C are preferentially disordered. While the identity is still unproven, this observed metastable conformer is most logically PrP* or a closely related precursor. The structural characteristics of this metastable conformer are consistent with available immunological and pathological information about the prion protein.  相似文献   

14.
Neuronal vacuolation (spongiosis), neuronal death, and pronounced glial reactions are the hallmarks of transmissible spongiform encephalopathies (TSEs), or prion diseases. A wealth of physical, biochemical, and immunological evidence indicates that the TSE agent, termed prion, does not contain agent-specific nucleic acid encoding its own constituents, as is the case for all other infectious pathogens. Also, no adaptive immune responses are elicited upon infection. A defining feature of TSEs is the deposition, mainly in the brain and lymphoreticular tissues, of an aggregated and structurally abnormal protein, designated PrP(Sc) or PrP-res, which represents a conformational isomer of the ubiquitous surface protein PrP(C). Biochemical and genetic evidence link PrP and its gene to the disease. Although TSEs are by definition transmissible, a growing number of Prnp-associated non-infectious neurodegenerative proteinopathies are now being recognized.  相似文献   

15.
The pathological prion protein PrP(Sc) is the only known component of the infectious prion. In cells infected with prions, PrP(Sc) is formed posttranslationally by the refolding of the benign cell surface glycoprotein PrP(C) into an aberrant conformation. The two PrP isoforms possess very different properties, as PrP(Sc) has a protease-resistant core, forms very large amyloidic aggregates in detergents, and is only weakly immunoreactive in its native form. We now show that prion-infected rodent brains and cultured cells contain previously unrecognized protease-sensitive PrP(Sc) varieties. In both ionic (Sarkosyl) and nonionic (n-octyl beta-D-glucopyranoside) detergents, the novel protease-sensitive PrP(Sc) species formed aggregates as small as 600 kDa, as measured by gel filtration. The denaturation dependence of PrP(Sc) immunoreactivity correlated with the size of the aggregate. The small PrP(Sc) aggregates described here are consistent with the previous demonstration of scrapie infectivity in brain fractions with a sedimentation coefficient as small as 40 S [Prusiner et al. (1980) J. Neurochem. 35, 574-582]. Our results demonstrate for the first time that prion-infected tissues contain protease-sensitive PrP(Sc) molecules that form low MW aggregates. Whether these new PrP(Sc) species play a role in the biogenesis or the pathogenesis of prions remains to be established.  相似文献   

16.
Previous studies identified two mammalian prion protein (PrP) polybasic domains that bind the disease-associated conformer PrP(Sc), suggesting that these domains of cellular prion protein (PrP(C)) serve as docking sites for PrP(Sc) during prion propagation. To examine the role of polybasic domains in the context of full-length PrP(C), we used prion proteins lacking one or both polybasic domains expressed from Chinese hamster ovary (CHO) cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. After ~5 rounds of sPMCA, PrP(Sc) molecules lacking the central polybasic domain (ΔC) were formed. Surprisingly, in contrast to wild-type prions, ΔC-PrP(Sc) prions could bind to and induce quantitative conversion of all the polybasic domain mutant substrates into PrP(Sc) molecules. Remarkably, ΔC-PrP(Sc) and other polybasic domain PrP(Sc) molecules displayed diminished or absent biological infectivity relative to wild-type PrP(Sc), despite their ability to seed sPMCA reactions of normal mouse brain homogenate. Thus, ΔC-PrP(Sc) prions interact with PrP(C) molecules through a novel interaction mechanism, yielding an expanded substrate range and highly efficient PrP(Sc) propagation. Furthermore, polybasic domain deficient PrP(Sc) molecules provide the first example of dissociation between normal brain homogenate sPMCA seeding ability from biological prion infectivity. These results suggest that the propagation of PrP(Sc) molecules may not depend on a single stereotypic mechanism, but that normal PrP(C)/PrP(Sc) interaction through polybasic domains may be required to generate prion infectivity.  相似文献   

17.
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of neurodegenerative disorders associated with the conversion of a normal host prion protein (PrP(C)) into a pathogenic isoform (PrP(Sc)). Despite years of research, there is still no known cure for TSEs. Amphotericin B (AmB), an anti-fungal antibiotic, has antiprion activity but its usage is limited by its toxicity. This study assessed the antiprion properties of new amphotericin analogues in which the exocyclic carboxyl groups were replaced by methyl groups. These analogues reduced levels of the abnormal PrP(Sc) isoform of the mouse prion protein in cultured cells. 16-descarboxyl-16-methyl-amphotericin B (16B) had antiprion activity equivalent to that of amphotericin B and was significantly less toxic to cells as determined by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide dye reduction assay. A non-anti-fungal analogue, 16-descarboxyl-16-methyl-19-O-(6-deoxyhexosyl)-19-O-desmycosaminyl-amphotericin (16-19B) had higher antiprion activity and significantly lower toxicity than AmB. Some of the new amphotericin analogues may have potential as antiprion drugs.  相似文献   

18.
Gerstmann-Str?ussler-Scheinker (GSS) disease is a dominantly inherited prion disease associated with point mutations in the Prion Protein gene. The most frequent mutation associated with GSS involves a proline-to-leucine substitution at residue 102 of the prion protein, and is characterized by marked variability at clinical, pathological and molecular levels. Previous investigations of GSS P102L have shown that disease-associated pathological prion protein, or PrP(Sc), consists of two main conformers, which under exogenous proteolysis generates a core fragment of 21 kDa and an internal fragment of 8 kDa. Both conformers are detected in subjects with spongiform degeneration, whereas only the 8 kDa fragment is recovered in cases lacking spongiosis. Several studies have reported an exclusive derivation of protease-resistant PrP(Sc) isoforms from the mutated allele; however, more recently, the propagation of protease-resistant wild-type PrP(Sc) has been described. Here we analyze the molecular and pathological phenotype of six GSS P102L cases characterized by the presence of 21 and 8 kDa PrP fragments and two subjects with only the 8 kDa PrP fragment. Using sensitive protein separation techniques and Western blots with antibodies differentially recognizing wild-type and mutant PrP we observed a range of PrP(Sc) allelic conformers, either resistant or sensitive to protease treatment in all investigated subjects. Additionally, tissue deposition of protease-sensitive wild-type PrP(Sc) molecules was seen by conventional PrP immunohistochemistry and paraffin-embedded tissue blot. Our findings enlarge the spectrum of conformational allelic PrP(Sc) quasispecies propagating in GSS P102L thus providing a molecular support to the spectrum of disease phenotypes, and, in addition, impact the diagnostic role of PrP immunohistochemistry in prion diseases.  相似文献   

19.
Prions are defined as infectious agents that comprise only proteins and are responsible for transmissible spongiform encephalopathies (TSEs)--fatal neurodegenerative diseases that affect humans and other mammals and include Creutzfeldt-Jacob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. Prions have been proposed to arise from the conformational conversion of the cellular prion protein PrP(C) to a misfolded form termed PrP(Sc) that precipitates into aggregates and fibrils. The conversion process might be triggered by interaction of the infectious form with the cellular form or it might result from a mutation in the gene encoding PrP(C). Exactly how and where in the cell the interaction and the conversion of PrP(C) to PrP(Sc) occur, however, remain controversial. Recent studies have shed light on the intracellular trafficking of PrP(C), the role of protein mis-sorting and the cellular factors that are thought to be required for the conformational conversion of prion proteins.  相似文献   

20.
Prion diseases are associated with the accumulation of an abnormal isoform of host-encoded prion protein (PrP(Sc)). A number of prion strains can be distinguished by "glycotyping" analysis of the respective deposited PrP(Sc) compound. In this study, the long-term proteinase K resistance, the molecular mass, and the localization of PrP(Sc) deposits derived from conventional and transgenic mice inoculated with 11 different BSE and scrapie strains or isolates were examined. Differences were found in the long-term proteinase K resistance (50 microg/ml at 37 degrees C) of PrP(Sc). For example, scrapie strain Chandler or PrP(Sc) derived from field BSE isolates were destroyed after 6 hr of exposure, whereas PrP(Sc) of strains 87V and ME7 and of the Hessen1 isolate were extremely resistant to proteolytic cleavage. Nonglycosylated, proteinase K-treated PrP(Sc) of BSE isolates and of scrapie strain 87V exhibited a 1-2 kD lower molecular mass than PrP(Sc) derived from all other scrapie strains and isolates. With the exception of strain 87V, PrP(Sc) was generally deposited in the cerebrum, cerebellum, and brain stem of different mouse lines at comparable levels. Long-term proteinase resistance, molecular mass, and the analysis of PrP(Sc) deposition therefore provide useful criteria in discriminating prion strains and isolates (e.g., BSE and 87V) that are otherwise indistinguishable by the PrP(Sc) "glycotyping" technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号