首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Death-associated protein (Daxx) deletion mutant (aa 501-625) has been known to be an inducer of apoptosis. In this study, we observed that the Bax-dependent mitochondrial death signaling pathway plays an important role in Daxx501-625-induced apoptosis. Daxx fragment-induced activation of caspase-9 and -3 was mediated through the apoptosis signal-regulating kinase 1 (ASK1)-MEK-c-Jun-N-terminal kinase (JNK)/p38-Bax pathway. By overexpressing JNK-binding domain (JBD) of JIP1, a JNK-inhibitory protein, and treatment with SB203580, a specific p38 inhibitor, DU-145 cells were made resistant to Daxx501-625-induced apoptosis. Capase-3 deficiency, Bax deficiency, or overexpression of a dominant-negative caspase-9 mutant prevented apoptosis, even though the Daxx501-625 fragment still activated the ASK1-MEK-MAPK pathway. Interestingly, Daxx501-625-induced Bcl-2 interacting domain (Bid) cleavage was suppressed in the dominant-negative caspase-9 mutant cells, whereas Bim was still phosphorylated in these cells. These results suggest that cleavage of Bid occurs downstream of caspase-9 activation. In contrast, phosphorylation of Bim is upstream of caspase-9 activation. Taken together, our results suggest that Daxx501-625-induced apoptosis is mediated through the ASK1-MEK-JNK/p38-Bim-Bax-dependent caspase pathway.  相似文献   

2.
3.
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has a principal role in growth control through both its cytostatic effect on many different epithelial cell types and its ability to induce programmed cell death in a variety of other cell types. Here we have used a screen for proteins that interact physically with the cytoplasmic domain of the type II TGF-beta receptor to isolate the gene encoding Daxx - a protein associated with the Fas receptor that mediates activation of Jun amino-terminal kinase (JNK) and programmed cell death induced by Fas. The carboxy-terminal portion of Daxx functions as a dominant-negative inhibitor of TGF-beta-induced apoptosis in B-cell lymphomas, and antisense oligonucleotides to Daxx inhibit TGF-beta-induced apoptosis in mouse hepatocytes. Furthermore, Daxx is involved in mediating JNK activation by TGF-beta. Our findings associate Daxx directly with the TGF-beta apoptotic-signalling pathway, and make a biochemical connection between the receptors for TGF-beta and the apoptotic machinery.  相似文献   

4.
5.
Stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) responds to a variety of stress stimuli and controls cell fates such as cell cycle entrance, apoptosis and senescence. Stimuli such as ultraviolet irradiation and chemical reagents that damage genomic DNA induce the activation of the SAPK/JNK signaling pathway. However, it is unclear how the signal arising in the nucleus owing to DNA damage is transmitted to SAPK/JNK in the cytoplasm. Here, we report that the nuclear components Daxx and Ras-association domain family 1C (RASSF1C) link DNA damage to SAPK/JNK activation in HeLa cells. In response to DNA damage, Daxx localized in promyelocytic leukaemia-nuclear bodies (PML-NBs) undergoes ubiquitination and degradation. RASSF1C, a tumor suppressor and newly identified binding partner of Daxx, is constitutively anchored by Daxx in PML-NBs but is released from the nucleus when Daxx is degraded. This released RASSF1C translocates to cytoplasmic microtubules and participates in the activation of SAPK/JNK. Our data define a novel mechanism by which the Daxx-RASSF1C complex in PML-NBs couples nuclear DNA damage to the cytoplasmic SAPK/JNK signaling pathway.  相似文献   

6.
7.
Reovirus infection is a well-characterized experimental system for the study of viral pathogenesis and antiviral immunity within the central nervous system (CNS). We have previously shown that c-Jun N-terminal kinase (JNK) and the Fas death receptor each play a role in neuronal apoptosis occurring in reovirus-infected brains. Death-associated protein 6 (Daxx) is a cellular protein that mechanistically links Fas signaling to JNK signaling in several models of apoptosis. In the present study, we demonstrate that Daxx is upregulated in reovirus-infected brain tissue through a type I interferon-mediated mechanism. Daxx upregulation is limited to brain regions that undergo reovirus-induced apoptosis and occurs in the cytoplasm and nucleus of neurons. Cytoplasmic Daxx is present in Fas-expressing cells during reovirus encephalitis, suggesting a role for Daxx in Fas-mediated apoptosis following reovirus infection. Further, in vitro expression of a dominant negative form of Daxx (DN-Daxx), which binds to Fas but which does not transmit downstream signaling, inhibits apoptosis of reovirus-infected cells. In contrast, in vitro depletion of Daxx results in increased expression of caspase 3 and apoptosis, suggesting that Daxx plays an antiapoptotic role in the nucleus. Overall, these data imply a regulatory role for Daxx in reovirus-induced apoptosis, depending on its location in the nucleus or cytoplasm.  相似文献   

8.
Overexpression of JNK binding domain inhibited glucose deprivation-induced JNK1 activation, relocalization of Daxx from the nucleus to the cytoplasm, and apoptosis signal-regulating kinase 1 (ASK1) oligomerization in human prostate adenocarcinoma DU-145 cells. However, SB203580, a p38 inhibitor, did not prevent relocalization of Daxx and oligomerization of ASK1 during glucose deprivation. Studies from in vivo labeling and immune complex kinase assay demonstrated that phosphorylation of Daxx occurred during glucose deprivation, and its phosphorylation was mediated through the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. Data from immunofluorescence staining and protein interaction assay suggest that phosphorylated Daxx may be translocated to the cytoplasm, bind to ASK1, and subsequently lead to ASK1 oligomerization. Mutation of Daxx Ser667 to Ala results in suppression of Daxx relocalization during glucose deprivation, suggesting that Ser667 residue plays an important role in the relocalization of Daxx. Unlike wild-type Daxx, a Daxx deletion mutant (amino acids 501-625) mainly localized to the cytoplasm, where it associated with ASK1, activated JNK1, and induced ASK1 oligomerization without glucose deprivation. Taken together, these results show that glucose deprivation activates the ASK1-SEK1-JNK1-HIPK1 pathway, and the activated HIPK1 is probably involved in the relocalization of Daxx from the nucleus to the cytoplasm. The relocalized Daxx may play an important role in glucose deprivation-induced ASK1 oligomerization.  相似文献   

9.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

10.
Daxx enhances Fas-mediated apoptosis in a murine pro-B cell line,BAF3   总被引:3,自引:0,他引:3  
Daxx has been shown to play an essential in type I interferon (IFN-/β)-mediated suppression of B cell development and apoptosis. Recently, we demonstrated that Tyk2 is directly involved in IFN signaling for the induction and nuclear translocation of Daxx, which may result in growth arrest and/or apoptosis of B lymphocyte progenitors. To clarify the mechanism of Daxx-mediated apoptosis signaling in B lymphocyte progenitors, here we introduced an efficient suicide switch in a murine pro-B cell line, BAF3, by expressing FK506-binding protein-fused Fas intracellular domain (FKBP-Fas) and Daxx. It allows us to monitor Fas/Daxx-mediated signal by induction of Fas dimerization with the dimerizer drug AP20187. AP20187-mediated Fas dimerization induced not only apoptosis but also Jun N-terminal kinase (JNK) activation. However, AP20187 had no effect on cells expressing either Fas or Daxx only. Furthermore, expression of a JNK inhibitor, the JNK-binding domain of JIP-1, resulted in resistance to AP20187-mediated apoptosis in cells expressing FKBP-Fas and Daxx. These results imply that our novel suicide switch system may provide a powerful tool to delineate or identify the signaling molecules for Daxx-mediated apoptotic machinery in B lymphocyte progenitors through JNK activation.  相似文献   

11.
12.
We have previously described a new aspect of the Inhibitor of Apoptosis (IAP) family of proteins anti-apoptotic activity that involves the TAK1/JNK1 signal transduction pathway (1,2). Our findings suggest the existence of a novel mechanism that regulates the anti-apoptotic activity of IAPs that is separate from caspase inhibition but instead involves TAK1-mediated activation of JNK1. In a search for proteins involved in the XIAP/TAK1/JNK1 signaling pathway we isolated by yeast two-hybrid screening a novel X chromosome-linked IAP (XIAP)-interacting protein that we called ILPIP (hILP-Interacting Protein). Whereas ILPIP moderately activates JNK family members when expressed alone, it strongly enhances XIAP-mediated activation of JNK1, JNK2, and JNK3. The expression of a catalytically inactive mutant of TAK1 blocked XIAP/ILPIP synergistic activation of JNK1 thereby implicating TAK1 in this signaling pathway. ILPIP moderately protects against interleukin-1beta converting enzyme- or Fas-induced apoptosis and significantly potentiates the anti-apoptotic activity of XIAP. In vivo co-precipitation experiments show that both ILPIP and XIAP interact with TAK1 and tumor necrosis factor receptor-associated factor 6. Finally, expression of ILPIP did not affect the ability of XIAP to inhibit caspase activation, further supporting the idea that XIAP protection against apoptosis is achieved by two separate mechanisms: one requiring JNK1 activation and a second involving caspase inhibition.  相似文献   

13.
We have previously observed that metabolic oxidative stress-induced death domain-associated protein (Daxx) trafficking is mediated by the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. The relocalized Daxx from the nucleus to the cytoplasm during glucose deprivation participates in a positive regulatory feedback loop by binding to apoptosis signal-regulating kinase (ASK) 1. In this study, we report that Akt1 is involved in a negative regulatory feedback loop during glucose deprivation. Akt1 interacts with c-Jun NH(2)-terminal kinase (JNK)-interacting protein (JIP) 1, and Akt1 catalytic activity is inhibited. The JNK2-mediated phosphorylation of JIP1 results in the dissociation of Akt1 from JIP1 and subsequently restores Akt1 enzyme activity. Concomitantly, Akt1 interacts with stress-activated protein kinase/extracellular signal-regulated kinase (SEK) 1 (also known as MKK4) and inhibits SEK1 activity. Knockdown of SEK1 leads to the inhibition of JNK activation, JIP1-JNK2 binding, and the dissociation of Akt1 from JIP1 during glucose deprivation. Knockdown of JIP1 also leads to the inhibition of JNK activation, whereas the knockdown of Akt1 promotes JNK activation during glucose deprivation. Altogether, our data demonstrate that Akt1 participates in a negative regulatory feedback loop by interacting with the JIP1 scaffold protein.  相似文献   

14.
ABT-737 is a BH3 mimetic small molecule inhibitor that can effectively inhibit the activity of antiapoptotic Bcl-2 family proteins including Bcl2, Bcl-xL and Bcl-w, and further enhances the effect of apoptosis by activating the proapoptotic proteins (t-Bid, Bad, Bim). In this study, we demonstrate that ABT-737 improved the radiation sensitivity of cervical cancer HeLa cells and thereby provoked cell apoptosis. Our results show that ABT-737 inhibited HeLa cell proliferation and activated JNK and its downstream target c-Jun, which caused the up-regulation of Bim expression. Blockade of JNK/c-Jun signaling pathway resulted in significant down-regulation of ABT-737-induced Bim mRNA and protein expression level. Also, ABT-737 could evoke the Bim promoter activity, and enhance the radiation sensitivity of HeLa cells via JNK/c-Jun and Bim signaling pathway. Our data imply that combination of ABT-737 and conventional radiation therapy might represent a highly effective therapeutic approach for future treatment of cervical cancer.  相似文献   

15.
16.
Death domain (DD)-containing proteins are involved in both apoptosis and survival/proliferation signaling induced by activated death receptors. Here, a phylogenetic and structural analysis was performed to highlight differences in DD domains and their key regulatory interaction sites. The phylogenetic analysis shows that receptor DDs are more conserved than DDs in adaptors. Adaptor DDs can be subdivided into those that activate or inhibit apoptosis. Modeling of six homotypic DD interactions involved in the TNF signaling pathway implicates that the DD of RIP (Receptor interacting protein kinase 1) is capable of interacting with the DD of TRADD (TNFR1-associated death domain protein) in two different, exclusive ways: one that subsequently recruits CRADD (apoptosis/inflammation) and another that recruits NFkappaB (survival/proliferation).  相似文献   

17.
It is demonstrated that the c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. Our previous studies have suggested that K252a can obviously inhibit JNK activation induced by ischemia/reperfusion in the vulnerable hippocampal CA1 subregion. Here, we further discussed the potential mechanism of ischemic brain injury induced by the activation of JNK after 15?min of transient global cerebral ischemia. As a result, through inhibiting phosphorylation of Bcl-2 (a cytosolic target of JNK) and 14-3-3 protein (a cytoplasmic anchor of Bax) induced by the activation of JNK, K252a decreased the release of Bax from Bcl-2/Bax and 14-3-3/Bax dimers, further attenuating the translocation of Bax from cytosol to mitochondria and the release of cytochrome c induced by ischemia/reperfusion, which related to mitochondria-mediated apoptosis. Importantly, pre-infusion of K2525a 20?min before ischemia showed neuroprotective effect against neuronal cells apoptosis. These findings imply that K252a induced neuroprotection against ischemia/reperfusion in rat hippocampal CA1 subregion via inhibiting the mitochondrial apoptosis pathway induced by JNK activation.  相似文献   

18.
Within the last two decades, 4-hydroxynonenal has emerged as an important second messenger involved in the regulation of various cellular processes. Our recent studies suggest that HNE can induce apoptosis in various cells through the death receptor Fas (CD95)-mediated extrinsic pathway as well as through the p53-dependent intrinsic pathway. Interestingly, through its interaction with the nuclear protein Daxx, HNE can self-limit its apoptotic role by translocating Daxx to cytoplasm where it binds to Fas and inhibits Fas-mediated apoptosis. In this paper, after briefly describing recent studies on various biological activities of HNE, based on its interactions with Fas, Daxx, and p53, we speculate on possible mechanisms through which HNE may affect a multitude of cellular processes and draw a parallel between signaling roles of H(2)O(2) and HNE.  相似文献   

19.
The Jun Kinase (JNK) signaling pathway responds to diverse stimuli by appropriate and specific cellular responses such as apoptosis, differentiation or proliferation. The mechanisms that mediate this specificity remain largely unknown. The core of this signaling pathway, composed of a JNK protein and a JNK kinase (JNKK), can be activated by various putative JNKK kinases (JNKKK) which are themselves downstream of different adaptor proteins. A proposed hypothesis is that the JNK pathway specific response lies in the combination of a JNKKK and an adaptor protein upstream of the JNKK. We previously showed that the Drosophila homolog of pRb (Rbf1) and a mutant form of Rbf1 (Rbf1D253A) have JNK-dependent pro-apoptotic properties. Rbf1D253A is also able to induce a JNK-dependent abnormal proliferation. Here, we show that Rbf1-induced apoptosis triggers proliferation which depends on the JNK pathway activation. Taking advantage of these phenotypes, we investigated the JNK signaling involved in either Rbf1-induced apoptosis or in proliferation in response to Rbf1-induced apoptosis. We demonstrated that 2 different JNK pathways involving different adaptor proteins and kinases are involved in Rbf1-apoptosis (i.e. Rac1-dTak1-dMekk1-JNK pathway) and in proliferation in response to Rbf1-induced apoptosis (i.e., dTRAF1-Slipper-JNK pathway). Using a transient induction of rbf1, we show that Rbf1-induced apoptosis activates a compensatory proliferation mechanism which also depends on Slipper and dTRAF1. Thus, these 2 proteins seem to be key players of compensatory proliferation in Drosophila.  相似文献   

20.
Members of tumour necrosis factor (TNF) family usually trigger both survival and apoptotic signals in various cell types. Heat shock proteins (HSPs) are conserved proteins implicated in protection of cells from stress stimuli. However, the mechanisms of HSPs in TNFα‐induced signalling pathway have not been fully elucidated. We report here that HSP70 over‐expression in human colon cancer cells can inhibit TNFα‐induced NFκB activation but promote TNFα‐induced activation of c‐Jun N‐terminal kinase (JNK) through interaction with TNF receptor (TNFR)‐associated factor 2 (TRAF2). We provide evidence that HSP70 over‐expression can sequester TRAF2 in detergent‐soluble fractions possibly through interacting with TRAF2, leading to reduced recruitment of receptor‐interacting protein (RIP1) and IκBα kinase (IKK) signalosome to the TNFR1–TRADD complex and inhibited NFκB activation after TNFα stimuli. In addition, we found that HSP70–TRAF2 interaction can promote TNFα‐induced JNK activation. Therefore, our study suggests that HSP70 may differentially regulate TNFα‐induced activation of NFκB and JNK through interaction with TRAF2, contributing to the pro‐apoptotic roles of HSP70 in TNFα‐induced apoptosis of human colon cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号