首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Brassica napus has high boron (B) demand, but significant genotype differences exist with respect to B deficiency. The aim of this research was to elucidate the relationship between the different sensitivities of Brassica napus cultivars to low B stress and the characteristics of B uptake and transport to characterise the regulation of B efficiency in Brassica napus.

Methods

B-efficient and B-inefficient Brassica napus cultivars were used to compare the uptake and transport of B using the stable isotope 10B tracer and grafting experiments, as well as expression of B transporters by RT-PCR.

Results

B-efficient cultivars have significant advantages with regard to B limitation. The B-efficient cultivar HZ showed less severe B deficiency symptoms and higher dry biomass than the B-inefficient cultivars LW and LB. Both the amount of total B and the 10B concentration and accumulation in the shoots and roots of B-efficient HZ were higher than those of B-inefficient cultivars. In B-inefficient LW, the amount of total B and the 10B that was transported into shoots was less than in the other three cultivars and the content and accumulation of total B and 10B in the roots of B-inefficient LB were the lowest among all of the cultivars. When the roots of B-efficient HZ were used as stocks, the grafted plants showed B-efficient characteristics, such as mild B deficiency symptoms, and higher dry biomass and B accumulation, regardless of whether they originated from B-efficient or B-inefficient cultivars. In contrast, the grafted plants with B-inefficient LW used as stocks were B-inefficient. The expressions of BnBOR1;1c, BnBOR1;2a and BnNIP5;1 were up-regulated in roots under low B stress compared with the normal B condition. However, there was no obvious difference in the expressions of the three genes or of four other BnBOR1s between B-efficient and B-inefficient cultivars in low or normal B environments.

Conclusions

These results indicate that the B efficiency of Brassica napus is controlled primarily by roots, which allow more uptake and accumulation of B in B-efficient cultivars than B-inefficient cultivars in a low B environment. However the molecular mechanism regulating B efficiency in Brassica napus remains to be determined.  相似文献   

2.
The extent of genome redundancy exhibited by Brassica species provides a model to study the evolutionary fate of multi-copy genes and the effects of polyploidy in economically important crops. Phytoene synthase (PSY) catalyzes the first committed reaction of the carotenoid biosynthetic pathway, which has been shown to be rate-limiting in Brassica napus seeds. In Arabidopsis thaliana, a single PSY gene (AtPSY) regulates phytoene synthesis in all tissues. Considering that diploid Brassica genomes contain three Arabidopsis-like subgenomes, the objectives of the present work were to determine whether PSY gene families exist in B. napus (AACC) and its diploid progenitor species, Brassica rapa (AA) and Brassica oleracea (CC); to establish the level of retention of Brassica PSY genes; to map PSY gene family members in the A and C genomes and to compare Brassica PSY gene expression patterns. A total of 12 PSY homologues were identified, 6 in B. napus (BnaX.PSY.a-f) and 3 in B. rapa (BraA.PSY.a-c) and B. oleracea (BolC.PSY.a-c). Indeed, with six members, B. napus has the largest PSY gene family described to date. Sequence comparison between AtPSY and Brassica PSY genes revealed a highly conserved gene structure and identity percentages above 85% at the coding sequence (CDS) level. Altogether, our data indicate that PSY gene family expansion preceded the speciation of B. rapa and B. oleracea, dating back to the paralogous subgenome triplication event. In these three Brassica species, all PSY homologues are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non-photosynthetic tissues. This evidence supports the hypothesis that functional divergence of PSY gene expression facilitates the accumulation of high levels of carotenoids in chromoplast-rich tissues. Thus, functional retention of triplicated Brassica PSY genes could be at least partially explained by the selective advantage provided by increased levels of gene product in floral organs. A better understanding of carotenogenesis in Brassica will aid in the future development of transgenic and conventional cultivars with carotenoid-enriched oil.  相似文献   

3.
In oilseed rape (Brassica napus), the glucosyltransferase UGT84A9 catalyzes the formation of 1-O-sinapoyl-β-glucose, which feeds as acyl donor into a broad range of accumulating sinapate esters, including the major antinutritive seed component sinapoylcholine (sinapine). Since down-regulation of UGT84A9 was highly efficient in decreasing the sinapate ester content, the genes encoding this enzyme were considered as potential targets for molecular breeding of low sinapine oilseed rape. B. napus harbors two distinguishable sequence types of the UGT84A9 gene designated as UGT84A9-1 and UGT84A9-2. UGT84A9-1 is the predominantly expressed variant, which is significantly up-regulated during the seed filling phase, when sinapate ester biosynthesis exhibits strongest activity. In the allotetraploid genome of B. napus, UGT84A9-1 is represented by two loci, one derived from the Brassica C-genome (UGT84A9a) and one from the Brassica A-genome (UGT84A9b). Likewise, for UGT84A9-2 two loci were identified in B. napus originating from both diploid ancestor genomes (UGT84A9c, Brassica C-genome; UGT84A9d, Brassica A-genome). The distinct UGT84A9 loci were genetically mapped to linkage groups N15 (UGT84A9a), N05 (UGT84A9b), N11 (UGT84A9c) and N01 (UGT84A9d). All four UGT84A9 genomic loci from B. napus display a remarkably low micro-collinearity with the homologous genomic region of Arabidopsis thaliana chromosome III, but exhibit a high density of transposon-derived sequence elements. Expression patterns indicate that the orthologous genes UGT84A9a and UGT84A9b should be considered for mutagenesis inactivation to introduce the low sinapine trait into oilseed rape.  相似文献   

4.
Rapeseed (Brassica napus) is sensitive to low boron (B) stress and plentiful variation exists in response to B deficiency. One major QTL, BE1, and three minor loci controlling B efficiency in Brassica napus were previously detected. To fine map and clone the B-efficient gene (s), the development of B-efficient NILs in Brassica napus was conducted, combining the identification of B efficiency at seedling stage with genetic background selection using random AFLP markers. The molecular marker assisted background selection proved its optimum and necessary in an early backcrossing generation to select the backcross individuals with high genetic background similarity to accelerate the construction of NILs. Based on B efficiency investigated at seedling stage under the low B conditions, the B-efficient backcross line can produce biomass twice about the B-inefficient parent’s and show low B concentration and effective utilization of B under low B condition. Thus, the B efficiency might be attributed to the higher B utilization efficiency or less demand for B.  相似文献   

5.
Gao Y  Chen J  Zhao Y  Li T  Wang M 《Molecular biology reports》2012,39(2):1957-1962
DELLA proteins are negative regulators of GA-induced growth. DELLA protein family is characterized by a DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. A full-length cDNA encoding a putative DELLA protein with high sequence homology to Arabidopsis thaliana RGA (AtRGA), designated as BnRGA, was isolated from Brassica napus. The full-length cDNA of BnRGA contained a 1,740 bp open reading frame (ORF) encoding a precursor protein of 579 amino acid residues. Comparative and bioinformatics analyses revealed that BnRGA showed a high degree of homology with DELLA proteins and contained the DELLA domain, TVHYNP domain, VHIID domain and RVER domain. Using real-time PCR, the expression patterns of BnRGA and two our previously isolated genes, BnGID1a and BnSLY1 in B. napus, were analyzed by adding exogenous gibberellins acid-3 (GA3), GA biosynthetic inhibitor paclobutrazol (PAC) and abscisic acid (ABA). The results showed that the expression of BnGID1a and BnSLY1 was down-regulated after treated by GA3 and induced by PAC and ABA. These results suggest that the expression of BnGID1a and BnSLY1 may be negatively regulated by the level of endogenous GA in B. napus. Moreover, BnRGA was not significantly regulated by GA3, PAC and ABA in the low concentrations. These suggest that GA-GID1-SCF-DELLA complex may have a mechanism of self-regulation, thereby preserving the stability of the expression level of BnRGA in B. napus.  相似文献   

6.
7.
Boron (B) is an essential micronutrient for plants, but the molecular mechanisms underlying the uptake and distribution of B in allotetraploid rapeseed (Brassica napus) are unclear. Here, we identified a B transporter of rapeseed, BnaC4.BOR1;1c, which is expressed in shoot nodes and involved in distributing B to the reproductive organs. Transgenic Arabidopsis plants containing a BnaC4.BOR1;1c promoter‐driven GUS reporter gene showed strong GUS activity in roots, nodal regions of the shoots and immature floral buds. Overexpressing BnaC4.BOR1;1c in Arabidopsis wild type or in bor1‐1 mutants promoted wild‐type growth and rescued the bor1‐1 mutant phenotype. Conversely, knockdown of BnaC4.BOR1;1c in a B‐efficient rapeseed line reduced B accumulation in flower organs, eventually resulting in severe sterility and seed yield loss. BnaC4.BOR1;1c RNAi plants exhibited large amounts of disintegrated stigma papilla cells with thickened cell walls accompanied by abnormal proliferation of lignification under low‐B conditions, indicating that the sterility may be a result of altered cell wall properties in flower organs. Taken together, our results demonstrate that BnaC4.BOR1;1c is a AtBOR1‐homologous B transporter gene expressing in both roots and shoot nodes that is essential for the developing inflorescence tissues, which highlights its diverse functions in allotetraploid rapeseed compared with diploid model plant Arabidopsis.  相似文献   

8.
Li X  Qin JC  Wang QY  Wu X  Lang CY  Pan HY  Gruber MY  Gao MJ 《Plant cell reports》2011,30(8):1435-1442
Genistein, 4′,5,7-trihydroxyisoflavone, is an isoflavonoid compound predominantly restricted to legumes and known to possess phyto-oestrogenic and antioxidative activities. The key enzyme that redirects phenylpropanoid pathway intermediates from flavonoids to isoflavonoids is the isoflavone synthase (IFS). Brassica napus is a non-legume oilseed crop with vegetative tissues producing phenylpropanoids and flavonoids, but does not naturally accumulate isoflavones due to the absence of IFS. To demonstrate whether exogenous IFS is able to use endogenous substrate to produce isoflavone genistein in oilseed crop, the soybean IFS gene (GmIFS2) was incorporated into B. napus plants. The presence of GmIFS2 in B. napus was shown to direct the synthesis and accumulation of genistein derivatives in leaves up to 0.72 mg g−1 DW. In addition, expression levels for most B. napus genes in the phenylpropanoid pathway were altered. These results suggest that the heterologous GmIFS2 enzyme is functionally active at using the B. napus naringenin as a substrate to produce genistein in oilseed rape.  相似文献   

9.
A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line ‘3529’(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene’s upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.  相似文献   

10.
We conducted a sequence‐level comparative analyses, at the scale of complete bacterial artificial chromosome (BAC) clones, between the genome of the most economically important Brassica species, Brassica napus (oilseed rape), and those of Brassica rapa, the genome of which is currently being sequenced, and Arabidopsis thaliana. We constructed a new B. napus BAC library and identified and sequenced clones that contain homoeologous regions of the genome including stearoyl‐ACP desaturase‐encoding genes. We sequenced the orthologous region of the genome of B. rapa and conducted comparative analyses between the Brassica sequences and those of the orthologous region of the genome of A. thaliana. The proportion of genes conserved (~56%) is lower than has been reported previously between A. thaliana and Brassica (~66%). The gene models for sets of conserved genes were used to determine the extent of nucleotide conservation of coding regions. This was found to be 84.2 ± 3.9% and 85.8 ± 3.7% between the B. napus A and C genomes, respectively, and that of A. thaliana, which is consistent with previous results for other Brassica species, and 97.5 ± 3.1% between the B. napus A genome and B. rapa, and 93.1 ± 4.9% between the B. napus C genome and B. rapa. The divergence of the B. napus genes from the A genome and the B. rapa genes was greater than anticipated and indicates that the A genome ancestor of the B. napus cultivar studied was relatively distantly related to the cultivar of B. rapa selected for genome sequencing.  相似文献   

11.
Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.  相似文献   

12.
Broadening the avenue of intersubgenomic heterosis in oilseed Brassica   总被引:1,自引:0,他引:1  
Accumulated evidence has shown that each of the three basic Brassica genomes (A, B and C) has undergone profound changes in different species, and has led to the concept of the “subgenome”. Significant intersubgenomic heterosis was observed in hybrids between traditional Brassica napus and first generation lines of new type B. napus. The latter were produced by the partial introgression of subgenomic components from different species into B. napus. To increase the proportion of exotic subgenomic components and thus achieve stronger heterosis, lines of first generation new type B. napus were intercrossed with each other, and subjected to intensive marker-assisted selection to develop the second generation of new type B. napus. The second generation showed better agronomic traits and a higher proportion of introgression of subgenomic components than did the first generation. Compared with the commercial hybrid and the hybrids produced with the first generation new type B. napus, the novel hybrids showed stronger heterosis for seed yield during the 2 years of field trials. The extent of heterosis showed a significant positive correlation with the introgressed subgenomic components in the parental new type B. napus. To increase the content of the exotic subgenomic components further and to allow sustainable breeding of novel lines of new type B. napus, we initiated the development of a gene pool for new type B. napus that contained a substantial amount of genetic variation in the Ar and Cc genome. We discuss new approaches to broaden the avenue of intersubgenomic heterosis in oilseed Brassica.  相似文献   

13.
The genomic era provides new perspectives in understanding polyploidy evolution, mostly on the genome-wide scale. In this paper, we show the sequence and expression divergence between the homologous ALCATRAZ (ALC) loci in Brassica napus, responsible for silique dehiscence. We cloned two homologous ALC loci, namely BnaC.ALC.a and BnaA.ALC.a in B. napus. Driven by the 35S promoter, both the loci complemented to the alc mutation of Arabidopsis thaliana, yet only the expression of BnaC.ALC.a was detectable in the siliques of B. napus. Sequence alignment indicated that BnaC.ALC.a and BolC.ALC.a, or BnaA.ALC.a and BraA.ALC.a, possess a high level of similarity. The understanding of the sequence and expression divergence among homologous loci of a gene is of due importance for an effective gene manipulation and TILLING (or ECOTILLING) analysis for the allelic DNA variation at a given locus. S. Hua and I. H. Shamsi contributed equally to this work.  相似文献   

14.
15.
Polyploidy is a prominent process in higher plants and is often described as a genomic shock that may induce stress and defense responses. The Brassica napus allotetraploid model was chosen to investigate the proteomic modifications that occur during allopolyploid formation. Large-scale analysis of the proteome from the leaves of B. napus was performed and compared with the homozygous diploid progenitors, Brassica rapa and Brassica oleracea, and among the proteomic changes in B. napus in the early generations (F1–F4). The abundance of all these differentially expressed proteins in the F1 generation differed from that of the corresponding proteins expressed in its progenitors, some of which relatively deviated from mid-parent predictions, exhibiting somewhat non-additive expression repatterning. Proteomic changes in the resynthesized B. napus from the first to the fourth generations were detected, which indicated that gene silencing was a permanent phenomenon and it could be reactivated at any moment. Although leaf proteins were extensively modified in synthetic B. napus, the distribution of the “housekeeping” proteins was not disturbed. Moreover, no evidence of chaos or large disorder was observed after the merging of the two genomes. Instead, a novel order quickly developed, which might evolve in further generations of synthetic B. napus.  相似文献   

16.
In many cultivated crops, sources of resistance to diseases are sparse and rely on introgression from wild relatives. Agricultural crops often are allopolyploids resulting from interspecific crosses between related species, which are sources of diversity for resistance genes. This is the case for Brassica napus (oilseed rape, canola), an interspecific hybrid between Brassica rapa (turnip) and Brassica oleracea (cabbage). B. napus has a narrow genetic basis and few effective resistance genes against stem canker (blackleg) disease, caused by the fungus Leptosphaeria maculans, are currently available. B. rapa diversity has proven to be a valuable source of resistance (Rlm, LepR) genes, while B. oleracea genotypes were mostly considered susceptible. Here we identified a new resistance source in B. oleracea genotypes from America, potentially effective against French L. maculans isolates under both controlled and field conditions. Genetic analysis of fungal avirulence and subsequent cloning and validation identified a new avirulence gene termed AvrLm14 and suggested a typical gene-for-gene interaction between AvrLm14 and the postulated Rlm14 gene. AvrLm14 shares all the usual characteristics of L. maculans avirulence genes: it is hosted in a genomic region enriched in transposable elements and heterochromatin marks H3K9me3, its expression is repressed during vegetative growth but shows a strong overexpression 5–9 days following cotyledon infection, and it encodes a small secreted protein enriched in cysteine residues with few matches in databases. Similar to the previously cloned AvrLm10-A, AvrLm14 contributes to reduce lesion size on susceptible cotyledons, pointing to a complex interplay between effectors promoting or reducing lesion development.  相似文献   

17.
Transgene flow from engineered Brassica napus to wild weed relatives could potentially have an environmental effect. To evaluate the introgression of transgenic B. napus into wild Brassica juncea, the hybrid F1 and backcross progenies derived from B. juncea (genome constitution AABB) and transgenic B. napus (AACC) crosses were investigated. C-genome-specific simple sequence repeat (SSR) markers corresponding to linkage groups N11–N19 in B. napus were screened and used to estimate the marker frequency in hybrid F1 and backcross progenies. C-genome-specific markers could be stably detected in hybrid F1 and backcross BC1 plants, but were only rarely found in the BC2–BC5 generations. For example, a specific SSR marker for linkage group N12 segregated in BC2 generation but were completely lost in BC3–BC5, while a specific SSR marker of linkage group N15 segregated in BC1, BC2 and BC3 generations and was absent in more advanced backcrossed generations (BC4 and BC5). The results indicate that a certain gene regions in Brassica napus plants are transmitted at a relatively lower frequency to wild relatives, and more rapidly disappeared in subsequent backcross generations. We propose that a foreign gene or transgene that is integrated in the C-chromosome of Brassica napus could reduce the risk of introgression in nature.  相似文献   

18.
Fine mapping of six seed glucosinolate QTL (J2Gsl1, J3Gsl2, J9Gsl3, J16Gsl4, J17Gsl5 and J3Gsl6) (Ramchiary et al. in Theor Appl Genet 116:77–85, 2007a) was undertaken by the candidate gene approach. Based on the DNA sequences from Arabidopsis and Brassica oleracea for the different genes involved in the aliphatic glucosinolate biosynthesis, candidate genes were amplified and sequenced from high to low glucosinolate Brassica juncea lines Varuna and Heera, respectively. Of the 20 paralogues identified, 17 paralogues belonging to six gene families were mapped to 12 of the 18 linkage groups of B. juncea genome. Co-mapping of candidate genes with glucosinolate QTL revealed that the candidate gene BjuA.GSL-ELONG.a mapped to the QTL interval of J2Gsl1, BjuA.GSL-ELONG.c, BjuA.GSL-ELONG.d and BjuA.Myb28.a mapped to the QTL interval of J3Gsl2, BjuA.GSL-ALK.a mapped to the QTL interval of J3Gsl6 and BjuB.Myb28.a mapped to the QTL interval of J17Gsl5. The QTL J9Gsl3 and J16Gsl4 did not correspond to any of the mapped candidate genes. The functionality and contribution of different candidate genes/QTL was assessed by allelic variation study using phenotypic data of 785 BC4DH lines. It was observed that BjuA.Myb28.a and J9Gsl3 contributed significantly to the base level glucosinolate production while J16Gsl4, probably GSL-PRO, BjuA.GSL-ELONG.a and BjuA.GSL-ELONG.c contributed to the C3, C4 and C5 elongation pathways, respectively. Three A genome QTL: J2Gsl1harbouring BjuA.GSL-ELONG.a, J3Gsl2 harbouring both BjuA.GSL-ELONG.c and BjuA.Myb28.a and J9Gsl3, possibly the ‘Bronowski genes’, were identified as most important loci for breeding low glucosinolate B. juncea. We observed two-step genetic control of seed glucosinolate in B. juncea mainly effected by these three A genome QTL. This study, therefore, provides clues to the genetic mechanism of ‘Bronowski genes’ controlling the glucosinolate trait and also provides efficient markers for marker-assisted introgression of low glucosinolate trait in B. juncea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
F-box protein family is characterized by an F-box motif that has been shown to be critical for the controlled degradation of regulatory proteins. In plant, F-box protein plays an important role in signal pathways and involved in various signal transduction systems. A full-length cDNA encoding a putative F-box protein, designated as BnSLY1, was isolated from Brassica napus. The full-length cDNA of BnSLY1 was 809 bp containing a 438 bp open reading frame encoding a precursor protein of 138 amino acid residues. Comparative and bioinformatic analyses revealed that BnSLY1 showed high degree of homology with F-box proteins from other plant species and contained F-box, GGF and LSL conserved motifs. The expression of BnSLY1 under exogenous gibberellins acid-3 (GA3), abscisic acid (ABA) and GA biosynthetic inhibitor paclobutrazol (PAC) was analyzed using real-time PCR. The results showed that the expression of BnSLY1 was down-regulated after GA3 treatment and prominently induced by ABA in the low concentrations. Moreover, BnSLY1 was also induction in the high concentrations of PAC. These results suggest that the expression of BnSLY1 was regulated by the exogenous GA3, ABA and PAC and may be related to endogenous level of GA in B. napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号