首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress-induced dysfunction in trabecular meshwork (TM) cells is considered a major alteration that can lead to glaucoma. Hydrogen peroxide (H2O2) is the most widely used agent for inducing oxidation in TM cells in vitro. Quantitative real-time PCR (qPCR) is an important method for studying alterations in gene expression, and suitable (i.e. invariant) reference genes must be defined to normalize expression levels. In this study, eight common reference genes, i.e. PRS18, ACTB, B2M, GAPDH, PPIA, HPRT1, YWHAZ, and TBP, were evaluated for use in studies of H2O2-induced dysfunction in TM cells. Three established algorithms, geNorm, NormFinder, and BestKeeper, were used to analyze the reference genes. ACTB expression was least affected by H2O2 treatment in TM cells, and the combination of PPIA and HPRT1 was the most suitable gene pair for normalization. GAPDH and TBP were the most unstable genes and accordingly should be avoided in experiments with TM cells. These results provide a foundation for analyses of the mechanisms underlying glaucoma, and emphasize the importance of selecting suitable reference genes for qPCR studies.  相似文献   

2.
Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana, coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA, for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.  相似文献   

3.
The selection of a stable reference gene is vital to gene expression studies and to improving the accuracy of RT-qPCR data. With the deep research on the artificial feed of the Harmonia axyridis, there is an increasing need to evaluate the effects of feed on insects at the molecular level. To identify a reference gene to assess the expression of related genes in Harmonia axyridis (Pallas), ensure the reliability of target gene expression analysis using real-time PCR. Especially for H. axyridis were fed Rhopalosiphum padi (L.) or an artificial diet. In this study, the expression profiles of nine candidate reference genes, including 28SrRNA, 18SrRNA, RPS23, EF1, Actin, ATPase, GAPDH, UBI, RPL13 from different H. axyridis tissues (head, thorax, wing, leg, ovary, and fat body) were investigated. The stability of the nine candidate genes was assessed using geNorm, NormFinder, BestKeeper and RefFinder software, and a comprehensive analysis showed that EF1 is a suitable reference gene for eating different diets of different organizations from H. axyridis. 28SrRNA, 18SrRNA, and RPS23 can also be used as reference genes, but Actin, ATPase, RPL13 are not suitable as an internal reference gene.  相似文献   

4.
It is important that endogenous reference genes for real-time RT-PCR be empirically evaluated for stability in different cell types, developmental stages, and/or sample treatment. To select the most stable endogenous reference genes during planarian regeneration, three housekeeping genes, 18S rRNA, ACTB and DjEF2, were identified and established expression levels by real-time RT-PCR. The data were analyzed by GeNorm and NormFinder software. Expression levels of the Djsix-1 gene were studied in parallel with ACTB and DjEF2 both or each and 18S rRNA as reference during regeneration. The results showed that ACTB was the most stable expressed reference gene in the planarian regeneration.  相似文献   

5.
6.
为筛选红掌(Anthurium andraeanumLinden)中稳定表达、可用于佛焰苞中实时荧光定量PCR分析(qRT-PCR)的内参基因,对5个组成型表达基因EF1-a、UBQ7、ACTB、GADPH、His3进行表达稳定性分析,并利用所筛选的内参基因研究红掌的二氢黄酮醇还原酶基因(dfr)的表达水平。结果表明,5种内参基因在不同品种间的表达稳定性不同。据内参基因标准化因子的配对差异分析(Vn/n+1),判定内参基因的最适数目为2,ACTB和UBQ7在红掌不同品种及佛焰苞发育不同阶段中表达均稳定,是理想的内参基因。dfr在不同品种的佛焰苞及佛焰苞发育过程中均有表达,且dfr表达水平的变化趋势一致,因此,所选内参基因是合适的。  相似文献   

7.
Gene expression studies using postmortem human brain tissue are a common tool for studying the etiology of psychiatric disorders. Quantitative real-time PCR (qPCR) is an accurate and sensitive technique used for gene expression analysis in which the expression level is quantified by normalization to one or more reference genes. Therefore, accurate data normalization is critical for validating results obtained by qPCR. This study aimed to identify genes that may serve as reference in postmortem dorsolateral-prefrontal cortices (Brodmann’s area 46) of schizophrenics, bipolar disorder (BPD) patients, and control subjects. In the exploratory stage of the analysis, samples of four BPD patients, two schizophrenics, and two controls were quantified using the TaqMan Low Density Array endogenous control panel, containing assays for 16 commonly used reference genes. In the next stage, six of these genes (TFRC, RPLP0, ACTB, POLR2a, B2M, and GAPDH) were quantified by qPCR in 12 samples of each clinical group. Expressional stability of the genes was determined by GeNorm and NormFinder. TFRC and RPLP0 were the most stably expressed genes, whereas the commonly used 18S, POLR2a, and GAPDH were the least stable. This report stresses the importance of examining expressional stability of candidate reference genes in the specific sample collection to be analyzed.  相似文献   

8.
9.
Quantitative methods of gene expression analysis in tumors require accurate data normalization, which allows comparison of different specimens with unknown mRNA/cDNA concentrations. For this purpose, reference genes with stable expression are used (e.g., GAPDH, ACTB, HPRT1, or TBP). The problem of choosing proper reference genes is still a topical issue, because well-known reference genes can be unsuitable for certain cancer types and their inappropriate use without additional testing can lead to wrong conclusions. A recently developed bioinformatical approach was employed to identify a new potential reference gene for lung and kidney tumors, RPN1, located on the long arm of chromosome 3. The method employed the mining of the dbEST and Oncomine databases and functional analysis of genes. RPN1 was selected from approximately 1500 candidate housekeeping genes. Using comparative genomic hybridization with NotI microarrays, we found no methylation, deletions, and/or amplifications in the RPN1-containing locus in 56 nonsmall cell lung and 42 clear cell renal cell cancer specimens. Real-time PCR showed that variation of RPN1 mRNA levels in nonsmall cell lung cancer and clear-cell renal cancer was low and comparable to that of the known reference genes GAPDH and GUSB, respectively. Expression levels of two hyalouronidase genes, HYAL1 and HYAL2, were assessed using the suggested references gene pairs (RPN1-GAPDH for lung cancer and RPN1-GUSB for kidney cancer), and these combinations were shown to produce accurate and reproducible data. These results suggest that RPN1 is a new, promising reference gene for quantitative data normalization in gene expression studies for lung and kidney cancers.  相似文献   

10.
Formalin-fixed paraffin-embedded (FFPE) tumour samples may provide crucial data regarding biomarkers for neoplasm progression. Analysis of gene expression is frequently used for this purpose. Therefore, mRNA expression needs to be normalized through comparison to reference genes. In this study, we establish which of the usually reported reference genes is the most reliable one in cutaneous malignant melanoma (MM) and cutaneous squamous cell carcinoma (CSCC). ACTB, TFRC, HPRT1 and TBP expression was quantified in 123 FFPE samples (74 MM and 49 CSCC biopsies) using qPCR. Expression stability was analysed by NormFinder and Bestkeeper softwares, and the direct comparison method between means and SD. The in-silico analysis with BestKeeper indicated that HPRT1 was more stable than ACTB and TFRC in MM (1.85 vs. 2.15) and CSCC tissues (2.09 vs. 2.33). The best option to NormFinder was ACTB gene (0.56) in MM and TFRC (0.26) in CSCC. The direct comparison method showed lower SD means of ACTB expression in MM (1.17) and TFRC expression in CSCC samples (1.00). When analysing the combination of two reference genes for improving stability, NormFinder indicated HPRT1 and ACTB to be the best for MM samples, and HPRT1 and TFRC genes for CSCC. In conclusion, HPRT1 and ACTB genes in combination are the most appropriate choice for normalization in gene expression studies in MM FFPE tissue, while the combination of HPRT1 and TFRC genes are the best option in analysing CSCC FFPE samples. These may be used consistently in forthcoming studies on gene expression in both tumours.  相似文献   

11.
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.  相似文献   

12.
The real-time polymerase chain reaction (PCR) data requires normalization with an internal control gene expressed at constant levels under all the experimental conditions being analyzed for accurate and reliable gene expression results. In this study, the expression of 12 candidate internal control genes, including ACT1, EF1α, GAPDH, IF4a, TUB6, UBC, UBQ5, UBQ10, 18SrRNA, 25SrRNA, GRX and HSP90, in a diverse set of 18 tissue samples representing different organs/developmental stages and stress conditions in chickpea (Cicer arietinum L.) has been validated. Their expression levels vary considerably in various tissue samples analyzed. The expression levels of EF1α and HSP90 are most constant across various organs/developmental stages analyzed. Similarly, the expression levels of IF4a and GAPDH are most constant across various stress conditions. A set of two most stable genes is found sufficient for accurate and reliable normalization of real-time PCR data in the given set of tissue samples of chickpea. The genes with most constant expression identified in this study should be useful for normalization of gene expression data in a wide variety of tissue samples in chickpea.  相似文献   

13.
14.
Normalisation to a reference gene is the most common method of internally controlling for error in quantitative PCR (qPCR) experiments. Studies based on qPCR in chickpea have been carried out using potential reference genes exclusively. Inappropriate normalisation may result in the acquisition of biologically irrelevant data. We have tested the expression of 12 candidate internal control genes in 36 samples representing different organs/developmental stages, genotypes and stress conditions. The most stably expressed genes were PUBQ, GAPDH, UBQ and bHLH, whereas 18S rRNA and EF-1a showed considerable regulation. The most suitable combination of reference genes for the particular experimental sets tested is provided. To illustrate the use of chickpea reference genes, we checked the expression of a putative defence gene in two different genotypes infected with Ascochyta rabiei (Pass.) Lab. The set of reference genes presented here will enable the more accurate and reliable normalisation of qPCR results for gene expression studies in this important legume crop. Our findings can be used as a starting point for reference gene selection in experimental conditions different from those tested here.  相似文献   

15.
This study was aimed to test a panel of six housekeeping genes (GAPDH, HPRT1, POLR2A, RPLP0, ACTB, and H3F) so as to identify and validate the most suitable reference genes for expression studies in astrocytomas. GAPDH was the most stable and HPRT1 was the least stable reference gene. The effect of reference gene selection on quantitative real-time polymerase chain reaction data interpretation was demonstrated, normalizing the expression data of a selected gene of interest. Thus, GAPDH may be recommended for data normalization in gene expression studies in astrocytomas. Nevertheless, a preliminary validation of reference gene stability is required prior to every study.  相似文献   

16.
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.  相似文献   

17.
18.
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive, efficient and reproducible technique for studying gene expression. Identification of stably expressed reference genes is required to avoid bias in these studies yet mostly unvalidated reference genes are used in studying gene expression in Clostridium difficile. Here, we sought to identify a set of stable reference genes used to normalize C. difficile expression data comparing exponential versus stationary phases of growth. Eight candidate reference genes (rpoA, rrs, gyrA, gluD, adk, rpsJ, tpi, and rho) were assessed in 3 C. difficile genotypes (ribotypes 027, 078, and 001). The primers were analyzed for efficiency and the 8 genes were ranked according to their stability. Overall, the genes rrs, adk, and rpsJ ranked among the most stable. Identification of the most stable genes was, however, strain dependent and suggests that selection of reference genes in a heterogeneous species, such as C. difficile, requires multiple genes to be assessed to confirm their stability within the strains being studied.  相似文献   

19.
20.

Pomegranate (Punica granatum L.) is an important economic fruit crop, facing many biotic and abiotic challenges during cultivation. Several research programs are in progress to understand both biotic and abiotic stress factors and mitigate these challenges using gene expression studies based on the qPCR approach. However, research publications are not available yet to select the standard reference gene for normalizing target gene expression values in pomegranate. The most suitable candidate reference gene is required to ensure precise and reliable results for qPCR analysis. Eight candidate reference genes' stability was evaluated under different stress conditions using different algorithms such as ?Ct, geNorm, BestKeeper, NormFinder, and RefFinder. The various algorithms revealed that EFA1 and 18S rRNA were common and most stable reference genes (RGs) under abiotic and wilt stress. Whereas comprehensive ranking by RefFinder showed GAPDH and CYPF were the most stable RGs under combined biotic (pooled samples of all biotic stress) and bacterial blight samples. For normalizing target gene expression under wilt, nematode, bacterial blight, and abiotic stress conditions both GAPDH and CYPFreference genes are adequate for qPCR. The above data provide comprehensive details for the selection of a candidate reference gene in various stresses in pomegranate

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号