首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, ID-1 (inhibitor of differentiation/DNA binding) is suggested as an oncogene and is reported to promote cell proliferation, invasion, and survival in several types of human cancer cells through multiple signaling pathways. However, how Id-1 interacts with these pathways and the immediate downstream effectors of the Id-1 protein are not known. In this study, using a yeast two-hybrid screening technique, we identified a novel Id-1-interacting protein, caveolin-1 (Cav-1), a cell membrane protein, and a positive regulator of cell survival and metastasis in prostate cancer. Using an immunoprecipitation method, we found that the helix-loop-helix domain of the Id-1 protein was essential for the physical interaction between Id-1 and Cav-1. In addition, we also demonstrated that the physical interaction between Id-1 and Cav-1 played a key role in the epithelial-mesenchymal transition and increased cell migration rate as well as resistance to taxol-induced apoptosis in prostate cancer cells. Furthermore, our results revealed that this effect was regulated by Id-1-induced Akt activation through promoting the binding activity between Cav-1 and protein phosphatase 2A. Our study demonstrates a novel Id-1 binding partner and suggests a molecular mechanism that mediates the function of Id-1 in promoting prostate cancer progression through activation of the Akt pathway leading to cancer cell invasion and resistance to anticancer drug-induced apoptosis.  相似文献   

2.
Loss of xanthine oxidoreductase (XOR) has been linked to aggressive breast cancer in vivo and to breast cancer cell aggressiveness in vitro. In the present study, we hypothesized that the contribution of XOR to the development of the normal mammary gland may underlie its capacity to modulate breast cancer. We contrasted in vitro and in vivo developmental systems by differentiation marker and microarray analyses. Human breast cancer microarray was used for clinical outcome studies. The role of XOR in differentiation and proliferation was examined in human breast cancer cells and in a mouse xenograft model. Our data show that XOR was required for functional differentiation of mammary epithelial cells both in vitro and in vivo. Poor XOR expression was observed in a mouse ErbB2 breast cancer model, and pharmacologic inhibition of XOR increased breast cancer tumor burden in mouse xenograft. mRNA microarray analysis of human breast cancer revealed that low XOR expression was significantly associated with time to tumor relapse. The opposing expression of XOR and inhibitor of differentiation-1 (Id1) during HC11 differentiation and mammary gland development suggested a potential functional relationship. While overexpression of Id1 inhibited HC11 differentiation and XOR expression, XOR itself modulated expression of Id1 in differentiating HC11 cells. Overexpression of XOR both inhibited Id1-induced proliferation and -stimulated differentiation of Heregulin-β1-treated human breast cancer cells. These results show that XOR is an important functional component of differentiation whose diminished expression contributes to breast cancer aggressiveness, and they support XOR as both a breast cancer biomarker and a target for pharmacologic activation in therapeutic management of aggressive breast cancer.  相似文献   

3.
Breast cancer is the most common neoplastic disorder diagnosed in women. The main goal of this study was to explore the effect of melatonin against breast cancer metastasis and compared this with the actions of taxol (a well-known chemotherapeutic drug), and the impact of their combination against breast cancer metastasis. Melatonin showed no cytotoxic effect while taxol showed antiproliferative and cytotoxic effects on MCF-7 and MDA-MB-231 cells. Furthermore, melatonin inhibited the generation of reactive oxygen species. Melatonin and taxol clearly decreased cell migration and invasion at low doses, especially those matching the normal physiological concentration at night. Melatonin and taxol markedly reduced DJ-1 and ID-1 and increased KLF17 messenger RNA and protein expression levels. The present results also showed that melatonin and taxol induced GSK3-β nuclear and Snail cytosolic localization. These changes were accompanied by a concurrent rise in E-cadherin expression. The above data show that normal levels of melatonin may help in preventing breast cancer metastasis through inhibiting DJ-1/KLF17/ID-1 signaling pathway. The combination of melatonin and taxol is a potent candidate against breast cancer metastasis, better than using melatonin or taxol as a single drug.  相似文献   

4.
Altered cellular metabolism is a defining feature of cancer [1]. The best studied metabolic phenotype of cancer is aerobic glycolysis--also known as the Warburg effect--characterized by increased metabolism of glucose to lactate in the presence of sufficient oxygen. Interest in the Warburg effect has escalated in recent years due to the proven utility of FDG-PET for imaging tumors in cancer patients and growing evidence that mutations in oncogenes and tumor suppressor genes directly impact metabolism. The goals of this review are to provide an organized snapshot of the current understanding of regulatory mechanisms important for Warburg effect and its role in tumor biology. Since several reviews have covered aspects of this topic in recent years, we focus on newest contributions to the field and reference other reviews where appropriate.  相似文献   

5.
6.
This study investigated the anticancer effects of embelin in human gastric cancer cells and the underlying molecular mechanisms. Gastric cancer cells were treated with embelin and 5-FU for methyl-thiazolyl-tetrazolium bromide cell viability assay and flow cytometric detection of cell viability and apoptosis. Protein pathway array (PPA) and Western blot were used to investigate differentially expressed proteins in embelin-treated gastric cancer cells. Embelin reduced gastric cancer cell viability, induced apoptosis, and enhanced 5-FU antitumor activity in gastric cancer cells. Mechanistically, embelin induced cell cycle arrest at the S and G2/M phases. Molecularly, embelin downregulated expression of X-linked inhibitor of apoptosis and cell cycle-regulatory proteins, such as CDK1, CDC25B, CDC25C, cyclinB1, and CDK2. PPA analysis showed that embelin modulated several pathways that are associated with cell growth and apoptosis, such as PI3K/AKT, JAK/STAT, p38 MAPK, and p53. The data from the current study implied that reduction of gastric cancer cell viability after treatment with embelin was through cell cycle arrest at the S and G2/M phases and apoptosis.  相似文献   

7.
Cystatin B is an anti-protease implicated in myoclonus epilepsy, a degenerative disease of the central nervous system. In vitro, cystatin B interacts with and inhibits proteases of the cathepsin family. Confocal microscopy analysis of the subcellular localization of cystatin B and cathepsin B shows that, in vivo, the two proteins are concentrated in different cell compartments. In fact, cystatin B is found mainly in the nucleus of proliferating cells and both in the nucleus and in the cytoplasm of differentiated cells, while cathepsin B, in either case, is essentially cytoplasmic. However, colocalization of cystatin and cathepsin B is observed in the isolated cell matrix and in the nuclear scaffold of differentiated neuroblastoma cells but not of proliferating cells. This suggests that at least a fraction of cystatin B is bound to the protease in differentiated cells. The electron microscopy analysis of the cell matrix confirms the observation made with confocal microscopy. The cellular activity of cathepsin B was analyzed with a fluorogenic cytochemical assay. A fluorescent signal is observed in the cytoplasm of proliferating cells but is undetectable in the cytoplasm of differentiated cells, suggesting that cathepsin B is active mainly during the cell cycle. This result is consistent with the separate compartimentalization of cystatin B and cathepsin B that we have observed in growing cells.  相似文献   

8.
Butyrolactone I (BL) is a competitive inhibitor of ATP for binding and activation of cyclin-dependent kinases and is a potent inhibitor of cell cycle progression. Treatment of H460 human lung and SW480 human colon cancer cells with doses of BL that exceed the Ki for CDK inhibition but which are much lower than doses required to inhibit MAPK, PKA, PKC, or EGFR lead to a rapid significant reduction of endogenous p21 protein expression. BL-dependent inhibition of p21 expression appears to be p53-independent. BL-dependent p21 degradation was blocked by lactacystin, consistent with the hypothesis that there is accelerated p21 proteasomal degradation in the presence of BL. BL also inhibited the p53-dependent increase of p21 protein expression in cells exposed to the DNA damag-ing agent etoposide, and favored a greater G2/M arrest as compared to the non-BL exposed cells. BL accelerated the degradation of exogenously expressed p21 that was not observed with a C-terminal truncated form of p21. Degradation of exogenous p21 led to a shift to G2 accumulation in the cells exposed to BL. We conclude that BL has effects on the cell cycle beyond its role as a CDK inhibitor and can be used as a novel tool to study the mechanism of p21 degradation and the consequences towards p21- dependent checkpoints.  相似文献   

9.
The retinoblastoma (Rb) tumor suppressor gene product, pRb, has an established role in the implementation of cellular senescence, the state of irreversible G1 cell cycle arrest provoked by diverse oncogenic stresses. In murine cells, senescence cell cycle arrest can be reversed by subsequent inactivation of pRb, indicating that pRb is required not only for the onset of cellular senescence, but also for the maintenance of senescence program in murine cells. However, in human cells, once pRb is fully activated by p16INK4a, senescence cell cycle arrest becomes irreversible and is no longer revoked by subsequent inactivation of pRb, suggesting that p16INK4a/Rb-pathway activates an alternative mechanism to irreversibly block the cell cycle in human senescent cells. Here, we discuss the molecular mechanism underlying the irreversibility of senescence cell cycle arrest and its potential towards tumor suppression.  相似文献   

10.
The roles of intracellular calcium in the regulation of cell metabolism and cell membrane permeability are highlighted with examples taken from recent studies.  相似文献   

11.
Plasminogen activator inhibitor 1 (PAI-1) content in colorectal cancer tissue extracts may be of strong prognostic value: high levels of PAI-1 in tumours predict poor prognosis. The gene encoding PAI-1 is highly polymorphic and PAI-1 gene variability could contribute to the level of PAI-1 biosynthesis. In the present work the distribution of genotypes and frequency of alleles of the 1334G/A polymorphism in 92 subjects with colorectal cancer in samples of cancer tissue and distant mucosa samples as well as in blood were investigated. Blood samples age matched healthy individuals (n = 110) served as control. The 1334G/A polymorphism was determined by PCR amplification using allele specific primers. No differences in the genotype distributions and allele frequencies between blood, distant mucosa samples and cancer tissue were detected. However, the distribution of the genotypes of the 1334G/A polymorphism in patients differed significantly (P <0.05) from those predicted by the Hardy-Weinberg equilibrium. There were significant differences in the frequencies of alleles between the colorectal cancer subjects and controls (P <0.05). The results support the hypothesis that the 1334G/A polymorphism may be associated with the incidence of colorectal cancer.  相似文献   

12.
Spindle and kinetochore-associated protein 1 (SKA1) is a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation. SKA1 is required for timely anaphase onset during mitosis, when chromosomes undergo bipolar attachment on spindle microtubules leading to silencing of the spindle checkpoint. Recently, SKA1 has been highlighted as a biomarker in some types of cancers, however, the precise role of SKA1 in gastric cancer remains unknown. In order to investigate the role of SKA1 in gastric cancer, the expression levels of SKA1 were analyzed in 56 gastric cancer samples and 54 non-neoplastic samples by immunohistochemistry, and we found SKA1 was significantly overexpressed in gastric cancer tissues. Moreover, we employed lentivirus-mediated short hairpin RNA to knockdown SKA1 in the human gastric cancer cell line MGC80-3. Functional analysis indicated that SKA1 silencing significantly inhibited cell proliferation and colony formation, as determined by MTT and colony formation assays. The depletion of SKA1 in MGC80-3 cells also led to S phase cell cycle arrest. These results suggest that SKA1 could be used for gastric cancer early diagnosis as a biomarker. It is possible to enable a potential therapy based on targeting SKA1.  相似文献   

13.
14.
15.
16.
Vitronectin endows plasminogen activator inhibitor 1 (PAI-1), the fast-acting inhibitor of both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), with additional thrombin inhibitory properties. In view of the apparent association between PAI-1 and vitronectin in the endothelial cell matrix (ECM), we analyzed the interaction between PAI-1 and thrombin in this environment. Upon incubating 125I-labeled alpha-thrombin with endothelial cell matrix (ECM), the protease formed SDS-stable complexes exclusively with PAI-1, with subsequent release of these complexes into the supernatant. Vitronectin was required as a cofactor for the association between PAI-1 and thrombin in ECM. Metabolic labeling of endothelial cell proteins, followed by incubation of ECM with t-PA, u-PA, or thrombin, indicated that all three proteases depleted PAI-1 from ECM by complex formation and proteolytic cleavage. Proteolytically inactive thrombin as well as anticoagulant thrombin, i.e., thrombin in complex with its endothelial cell surface receptor thrombomodulin, did not neutralize PAI-1, emphasizing that the procoagulant moiety of thrombin is required for a functional interaction with PAI-1. A physiological implication of our findings may be related to the mutual neutralization of both PAI-1 and thrombin, providing a new link between plasminogen activation and the coagulation system. Evidence is provided that in ECM, procoagulant thrombin may promote plasminogen activator activity by inactivating PAI-1.  相似文献   

17.
Anwulignan is a monomer compound derived from Schisandra sphenanthera lignans. It has been reported to possess a spectrum of pharmacological activities, including anti-bacterial, anti-inflammatory, anticancer and hepatoprotective properties. However, its anticancer capacity and molecular mechanism(s) against non-small cell lung cancer (NSCLC) have not been fully elucidated. Anwulignan significantly inhibited cell growth and increased G1-phase cell cycle arrest in NSCLC cells. Anwulignan strongly attenuates the JAK1/STAT3 signalling pathway by directly targeting JAK1 protein kinase activity in vitro. The anticancer activity by Anwulignan is dependent upon the JAK1 protein expression. Remarkably, Anwulignan strongly inhibited tumour growth in vivo. In conclusion, Anwulignan is a novel JAK1 inhibitor that may have therapeutic implications for NSCLC management.  相似文献   

18.
19.
Invasion and metastasis are the primary causes of breast cancer mortality, and increased knowledge about the molecular mechanisms involved in these processes is highly desirable. High levels of hyaluronan in breast tumors have been correlated with poor patient survival. The involvement of hyaluronan in the early invasive phase of a clone of breast cancer cell line MDA-MB-231 that forms bone metastases was studied using an in vivo-like basement membrane model. The metastatic to bone tumor cells exhibited a 7-fold higher hyaluronan-synthesizing capacity compared with MDA-MB-231 cells predominately due to an increased expression of hyaluronan synthase 2 (HAS2). We found that knockdown of HAS2 completely suppressed the invasive capability of these cells by the induction of tissue metalloproteinase inhibitor 1 (TIMP-1) and dephosphorylation of focal adhesion kinase. HAS2 knockdown-mediated inhibition of basement membrane remodeling was rescued by HAS2 overexpression, transfection with TIMP-1 siRNA, or addition of TIMP-1-blocking antibodies. Moreover, knockdown of HAS2 suppressed the EGF-mediated induction of the focal adhesion kinase/PI3K/Akt signaling pathway. Thus, this study provides new insights into a possible mechanism whereby HAS2 enhances breast cancer invasion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号