首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

2.
Carbonic anhydrase I (CAI) is one out of ten CA isoenzymes that have been identified in humans. X-ray crystallographic and inhibitor complex studies of human carbonic anhydrase I (HCAI) and related studies in other CA isoenzymes identified several residues, in particular Thr199, GlulO6, Tyr7, Glull7, His l07, with likely involvement in the catalytic activity of HCAI. To further study the role of these residues, we undertook, site-directed mutagenesis of HCAI. Using a polymerase chain reaction based strategy and altered oligonucleotide primers, we modified a cloned wild type hCAI gene so as to produce mutant genes encoding proteins with single amino acid substitutions. Thrl99Val, Thrl99Cys, Thr199Ser, GlulO6Ile, Glul06Gln, Tyr7Trp, Glu.117Gln, and His 107Val mutations were thus generated and the activity of each measured by ester hydrolysis. Overproduction of the Glu117Gln and HisI07Val mutant proteins inEscherichia coli resulted in a large proportion of the enzyme forming aggregates probably due to folding defect. The mutations Thr199Val, GlulO6Ile and GlulO6Gln gave soluble protein with drastically reduced enzyme activity, while the Tyr7Trp mutation had only marginal effect on the activity, thus s.uggesting important roles for Thr199 and Glu lO6 but not for Tyr7 in the catalytic function of HCAI.  相似文献   

3.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

4.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

5.
The peptidoglycan glycosyltransferase (GT) module of class A penicillin-binding proteins (PBPs) and monofunctional GTs catalyze glycan chain elongation of the bacterial cell wall. These enzymes belong to the GT51 family, are characterized by five conserved motifs, and have some fold similarity with the phage lambda lysozyme. In this work, we have systematically modified all the conserved amino acid residues of the GT module of Escherichia coli class A PBP1b by site-directed mutagenesis and determined their importance for the in vivo and in vitro activity and the thermostability of the protein. To get an insight into the GT active site of this paradigm enzyme, a model of PBP1b GT domain was constructed based on the available crystal structures (PDB codes 2OLV and 2OLU). The data show that in addition to the essential glutamate residues Glu233 of motif 1 and Glu290 of motif 3, the residues Phe237 and His240 of motif 1 and Gly264, Thr267, Gln271, and Lys274 of motif 2, all located in the catalytic cavity of the GT domain, are essential for the in vitro enzymatic activity of the PBP1b and for its in vivo functioning. Thus, the first three conserved motifs contain most of the residues that are required for the GT activity of the PBP1b. The residues Asp234, Phe237, His240, Thr267, and Gln271 are proposed to maintain the structure of the active site and the positioning of the catalytic Glu233.  相似文献   

6.
癌肿与氨基酸代谢的研究   总被引:2,自引:0,他引:2  
研究了癌肿与氨基酸代谢的关系。这些癌肿包括喉癌HepⅡ细胞 ,急性非淋巴细胞白血病和急性淋巴细胞白血病 ,结果表明 :( 1 )喉癌细胞株培养过程中亮氨酸、赖氨酸、丝氨酸、天冬酰胺、异亮氨酸、甘氨酸以及苏氨酸等水平明显降低 ,而色氨酸水平明显增加 ,说明喉癌细胞的生长繁殖必须依赖以上 7种氨基酸同时释放了色氨酸 ;( 2 )急性非淋巴细胞白血病 (ANLL)患者血浆中的谷氨酸、甘氨酸、亮氨酸、苯丙氨酸、酪氨酸和色氨酸等水平明显升高 ,而苏氨酸、组氨酸、丙氨酸等水平明显降低 ,这些结果与国际报道相一致 ;( 3)经治疗后 ,ANLL患者血浆中甘氨酸、色氨酸和苯丙氨酸等水平明显降低 ,而丙氨酸、组氨酸等水平明显升高 ,表明肿瘤细胞处在无氧代谢。患者经治疗后色氨酸和苯丙氨酸水平降低和组氨酸水平的升高对患者预后是有益的 ;( 4)急性淋巴细胞白血病患者血浆中苯丙氨酸、赖氨酸、色氨酸和酪氨酸水平提高 ,这些氨基酸能促进肿瘤生长 ,而门冬酰胺、谷氨酰胺以及天冬氨酸水平降低 ,说明这 3种氨基酸为肿瘤生长所必须。此外还发现ALL患者外周淋巴细胞中精氨酸水平增加 ,精氨酸对癌肿细胞有直接杀伤作用。  相似文献   

7.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

8.
Aspartokinase I and homoserine dehydrogenase I (AKI-HDI) from Serratia marcescens Sr41 are encoded by the thrA gene as a single polypeptide chain. Previously, a single amino acid substitution of Ser-352 with Phe was shown to produce an AKI-HDI enzyme that is not subject to threonine-mediated feedback inhibition. To determine the role of Ser-352 in the allosteric response, the thrA gene was modified by using site-directed mutagenesis so that Ser-352 of the wild-type AKI-HDI was replaced by Ala, Arg, Asn, Gln, Glu, His, Leu, Met, Pro, Thr, Trp, Tyr, or Val. The Thr-352 and Pro-352 replacements rendered AKIs sensitive to threonine. The Tyr-352 and Asn-352 substitutions led to activation, rather than inhibition, of AKI by threonine. The other replacements conferred threonine insensitivity on AKI. The threonine sensitivity of HDI was also changed by the amino acid substitutions at Ser-352. The HDI carried by the Tyr-352 mutant AKI-HDI was activated by threonine. Single amino acid replacements at Ser-352 by Ala, Asn, Gln, His, Phe, Pro, Thr, or Tyr were introduced into truncated AKI-HDIs containing the AKI and the central regions. The AKI activity of the truncated AKI-HDI containing the first 468 amino acid residues was sensitive to threonine, and introduction of the amino acid replacements did not alter the threonine sensitivity of the AKI. Another truncated AKI-HDI containing the first 462 amino acid residues possessed threonine-resistant AKI, whereas the substitutions of Ser-352 with Ala and Pro rendered AKI sensitive to threonine. The replacement of GIn-351 with Phe activated AK1 of the truncated AKI-HDI in the presence of L-threonine. These findings suggest that Ser-352 of the central region of AKI-HDI is possibly a key residue involved with the allosteric regulation of both AKI and HDI activities.  相似文献   

9.
In this work, the fluorescence of glutamine-binding protein (GlnBP) and its complex with glutamine (GlnBP/Gln) in native and unfolded forms was studied. The experimental data were interpreted on the basis of the results of the analysis of Trp and Tyr microenvironments taking into the account the data for GlnBP mutated forms Trp32Phe(Tyr) and Trp220Phe(Tyr), which have been obtained by Axelsen et al. (Biophys. J. 1991, 60, 650-659). This allowed us to explain the negligible contribution of Tyr residues to the bulk fluorescence of the native protein, the similarity of the fluorescence characteristics of GlnBP and GlnBP/Gln, and the uncommon effect of the excess of the fluorescence intensity at 365 nm (Trp emission) upon excitation at 297 nm respect to the excitation at 280 nm. The last effect is explained by the spectral dependence of the Trp 32 and Trp 220 contributions to the protein absorption. The protein Trp fluorescence dependence on the excitation wavelength must be taken into account for the evaluation of the Tyr residues contribution to the bulk fluorescence of protein, and in principle, it also may be used for the development of an approach for the decomposition of a multicomponent protein fluorescence spectrum.  相似文献   

10.
We describe the de novo design and biophysical characterization of a model coiled-coil protein in which we have systematically substituted 20 different amino acid residues in the central "d" position. The model protein consists of two identical 38 residue polypeptide chains covalently linked at their N termini via a disulfide bridge. The hydrophobic core contained Val and Ile residues at positions "a" and Leu residues at positions "d". This core allowed for the formation of both two-stranded and three-stranded coiled-coils in benign buffer, depending on the substitution at position "d". The structure of each analog was analyzed by CD spectroscopy and their relative stability determined by chemical denaturation using GdnHCI (all analogs denatured from the two-stranded state). The oligomeric state(s) was determined by high-performance size-exclusion chromatography and sedimentation equilibrium analysis in benign medium. Our results showed a thermodynamic stability order (in order of decreasing stability) of: Leu, Met, Ile, Tyr, Phe, Val, Gln, Ala, Trp, Asn, His, Thr, Lys, Ser, Asp, Glu, Arg, Orn, and Gly. The Pro analog prevented coiled-coil formation. The overall stability range was 7.4 kcal/mol from the lowest to the highest analog, indicating the importance of the hydrophobic core and the dramatic effect a single substitution in the core can have upon the stability of the protein fold. In general, the side-chain contribution to the level of stability correlated with side-chain hydrophobicity. Molecular modelling studies, however, showed that packing effects could explain deviations from a direct correlation. In regards to oligomerization state, eight analogs demonstrated the ability to populate exclusively one oligomerization state in benign buffer (0.1 M KCl, 0.05 M K(2)PO(4)(pH 7)). Ile and Val (the beta-branched residues) induced the three-stranded oligomerization state, whereas Tyr, Lys, Arg, Orn, Glu and Asp induced the two-stranded state. Asn, Gln, Ser, Ala, Gly, Phe, Leu, Met and Trp analogs were indiscriminate and populated two-stranded and three-stranded states. Comparison of these results with similar substitutions in position "a" highlights the positional effects of individual residues in defining the stability and numbers of polypeptide chains occurring in a coiled-coil structure. Overall, these results in conjunction with other work now generate a relative thermodynamic stability scale for 19 naturally occurring amino acid residues in either an "a" or "d" position of a two-stranded coiled-coil. Thus, these results will aid in the de novo design of new coiled-coil structures, a better understanding of their structure/function relationships and the design of algorithms to predict the presence of coiled-coils within native protein sequences.  相似文献   

11.
The side chain of Gln143, a conserved residue in manganese superoxide dismutase (MnSOD), forms a hydrogen bond with the manganese-bound solvent and is critical in maintaining catalytic activity. The side chains of Tyr34 and Trp123 form hydrogen bonds with the carboxamide of Gln143. We have replaced Tyr34 and Trp123 with Phe in single and double mutants of human MnSOD and measured their catalytic activity by stopped-flow spectrophotometry and pulse radiolysis. The replacements of these side chains inhibited steps in the catalysis as much as 50-fold; in addition, they altered the gating between catalysis and formation of a peroxide complex to yield a more product-inhibited enzyme. The replacement of both Tyr34 and Trp123 in a double mutant showed that these two residues interact cooperatively in maintaining catalytic activity. The crystal structure of Y34F/W123F human MnSOD at 1.95 A resolution suggests that this effect is not related to a conformational change in the side chain of Gln143, which does not change orientation in Y34F/W123F, but rather to more subtle electronic effects due to the loss of hydrogen bonding to the carboxamide side chain of Gln143. Wild-type MnSOD containing Trp123 and Tyr34 has approximately the same thermal stability compared with mutants containing Phe at these positions, suggesting the hydrogen bonds formed by these residues have functional rather than structural roles.  相似文献   

12.
The complete amino acid sequence of Penicillium chrysogenum 152A guanyl-specific RNase has been established using automated Edman degradation of two non-fractionated peptide mixtures produced by tryptic and staphylococcal protease digests of the protein. The RNase contains 102 amino acid residues: His2, Arg3, Asp7, Asn8, Thr5, Ser11, Glu4, Gln2, Pro4, Gly11, Ala13, Cys4, Val8, Ile3, Leu3, Tyr9, Phe5 (Mr 10 747).  相似文献   

13.
Haloalkane dehalogenases catalyze cleavage of the carbon-halogen bond in halogenated aliphatic compounds, resulting in the formation of an alcohol, a halide, and a proton as the reaction products. Three structural features of haloalkane dehalogenases are essential for their catalytic performance: (i) a catalytic triad, (ii) an oxyanion hole, and (iii) the halide-stabilizing residues. Halide-stabilizing residues are not structurally conserved among different haloalkane dehalogenases. The level of stabilization of the transition state structure of S(N)2 reaction and halide ion provided by each of the active site residues in the enzymes DhlA, LinB, and DhaA was quantified by quantum mechanic calculations. The residues that significantly stabilize the halide ion were assigned as the primary (essential) or the secondary (less important) halide-stabilizing residues. Site-directed mutagenesis was conducted with LinB enzyme to confirm location of its primary halide-stabilizing residues. Asn38Asp, Asn38Glu, Asn38Phe, Asn38Gln, Trp109Leu, Phe151Leu, Phe151Trp, Phe151Tyr, and Phe169Leu mutants of LinB were constructed, purified, and kinetically characterized. The following active site residues were classified as the primary halide-stabilizing residues: Trp125 and Trp175 of DhlA; Asn38 and Trp109 of LinB; and Asn41 and Trp107 of DhaA. All these residues make a hydrogen bond with the halide ion released from the substrate molecule, and their substitution results in enzymes with significantly modified catalytic properties. The following active site residues were classified as the secondary halide-stabilizing residues: Phe172, Pro223, and Val226 of DhlA; Trp207, Pro208, and Ile211 of LinB; and Phe205, Pro206, and Ile209 of DhaA. The differences in the halide stabilizing residues of three haloalkane dehalogenases are discussed in the light of molecular adaptation of these enzymes to their substrates.  相似文献   

14.
A prototypic study of the molecular mechanisms of activation or inactivation of peptide hormone G protein-coupled receptors was carried out on the human B2 bradykinin receptor. A detailed pharmacological analysis of receptor mutants possessing either increased constitutive activity or impaired activation or ligand recognition allowed us to propose key residues participating in intramolecular interaction networks stabilizing receptor inactive or active conformations: Asn(113) and Tyr(115) (TM III), Trp(256) and Phe(259) (TM VI), Tyr(295) (TM VII) which are homologous of the rhodopsin residues Gly(120), Glu(122), Trp(265), Tyr(268), and Lys(296), respectively. An essential experimental finding was the spatial proximity between Asn(113), which is the cornerstone of inactive conformations, and Trp(256) which plays a subtle role in controlling the balance between active and inactive conformations. Molecular modeling and mutagenesis data showed that Trp(256) and Tyr(295) constitute, together with Gln(288), receptor contact points with original nonpeptidic ligands. It provided an explanation for the ligand inverse agonist behavior on the WT receptor, with underlying restricted motions of TMs III, VI, and VII, and its agonist behavior on the Ala(113) and Phe(256) constitutively activated mutants. These data on the B2 receptor emphasize that conformational equilibria are controlled in a coordinated fashion by key residues which are located at strategic positions for several G protein-coupled receptors. They are discussed in comparison with the recently determined rhodopsin crystallographic structure.  相似文献   

15.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

16.
The NHE1 isoform of the Na+/H+ exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in mammalian cells. Site-specific mutagenesis was used to examine the functional role of conserved, polar amino-acid residues occurring in segments of the protein associated with the membrane. Seventeen mutant proteins were assessed by characterization of intracellular pH changes in stably transfected cells that lacked an endogenous Na+/H+ exchanger. All of the mutant proteins were targeted correctly to the plasma membrane and were expressed at similar levels. Amino-acid residues Glu262 and Asp267 were critical to Na+/H+ exchanger activity while mutation of Glu391 resulted in only a partial reduction in activity. The Glu262-->Gln mutant was expressed partially as a deglycosylated protein with increased sensitivity to trypsin treatment in presence of Na+. Substitution of mutated Glu262, Asp267 and Glu391 with alternative acidic residues restored Na+/H+ exchanger activity. The Glu262-->Asp mutant had a decreased affinity for Li+, but its activity for Na+ and H+ ions was unaffected. The results support the hypothesis that side-chain oxygen atoms in a few, critically placed amino acids are important in Na+/H+ exchanger activity and the acidic amino-acid residues at positions 262, 267 and 391 are good candidates for being involved in Na+ coordination by the protein.  相似文献   

17.
Universality and structure of the N-end rule   总被引:47,自引:0,他引:47  
Our previous work has shown that, in the yeast Saccharomyces cerevisiae, any of the eight stabilizing amino-terminal residues confers a long (greater than 20 h) half-life on a test protein beta-galactosidase (beta gal), whereas 12 destabilizing amino-terminal residues confer on beta gal half-lives from less than 3 min to 30 min. We now show that an analogous single-residue code (the N-end rule) operates in an in vitro system derived from mammalian reticulocytes. We also show that the N-end rule has a hierarchical structure. Specifically, amino-terminal Glu and Asp (and also Cys in reticulocytes) are secondary destabilizing residues in that they are destabilizing through their ability to be conjugated to primary destabilizing residues such as Arg. Amino-terminal Gln and Asn are tertiary destabilizing residues in that they are destabilizing through their ability to be converted, via selective deamidation, into secondary destabilizing residues Glu and Asp. Furthermore, in reticulocytes, distinct types of the N-end-recognizing activity are shown to be specific for three classes of primary destabilizing residues: basic (Arg, Lys, His), bulky hydrophobic (Phe, Leu, Trp, Tyr), and small uncharged (Ala, Ser, Thr). Features of the N-end rule in reticulocytes suggest that the exact form of the N-end rule may depend on the cell's physiological state, thereby providing a mechanism for selective destruction of preexisting proteins upon cell differentiation.  相似文献   

18.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

19.
We have investigated the roles played by C-Hcdots, three dots, centeredpi interactions in RNA binding proteins. There was an average of 55 C-Hcdots, three dots, centeredpi interactions per protein and also there was an average of one significant C-Hcdots, three dots, centeredpi interaction for every nine residues in the 59 RNA binding proteins studied. Main-chain to side-chain C-Hcdots, three dots, centeredpi interactions is the predominant type of interactions in RNA binding proteins. The donor atom contribution to C-Hcdots, three dots, centeredpi interactions was mainly from Phe, Tyr, Trp, Pro, Gly, Lys, His and Ala residues. The acceptor atom contribution to main-chain to side-chain C-Hcdots, three dots, centeredpi and side-chain to side-chain C-Hcdots, three dots, centeredpi interactions was mainly from Phe and Tyr residues. On the contrary, the acceptor atoms of Trp residues contributed to all the four types of C-Hcdots, three dots, centeredpi interactions. Also, Trp contributed both donor and acceptor atoms in main-chain to side-chain, main-chain to side-chain five-member aromatic ring and side-chain to side-chain C-Hcdots, three dots, centeredpi interactions. The secondary structure preference analysis of C-Hcdots, three dots, centeredpi interacting residues showed that, Arg, Gln, Glu, His, Ile, Leu, Lys, Met, Phe and Tyr preferred to be in helix, while Ala, Asp, Cys, Gly, Trp and Val preferred to be in strand conformation. Long-range C-Hcdots, three dots, centeredpi interactions are the predominant type of interactions in RNA binding proteins. More than 50% of C-Hcdots, three dots, centeredpi interacting residues had a higher conservation score. Significant percentage of C-Hcdots, three dots, centeredpi interacting residues had one or more stabilization centers. Seven percent of the theoretically predicted stabilizing residues were also involved in C-Hcdots, three dots, centeredpi interactions and hence these residues may also contribute additional stability to RNA binding proteins.  相似文献   

20.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号