共查询到20条相似文献,搜索用时 8 毫秒
1.
Because homologous traits of males and females are likely to have a common genetic basis, sex-specific selection (often resulting from sexual selection on one sex) may generate an evolutionary tug-of-war known as intralocus sexual conflict, which will constrain the adaptive divergence of the sexes. Theory suggests that intralocus sexual conflict can be mitigated through reduction of the intersexual genetic correlation (rMF), predicting negative covariation between rMF and sexual dimorphism. In addition, recent work showed that selection should favor reduced expression of alleles inherited from the opposite-sex parent (intersexual inheritance) in traits subject to intralocus sexual conflict. For traits under sexual selection in males, this should be manifested either in reduced maternal heritability or, when conflict is severe, in reduced heritability through the opposite-sex parent in offspring of both sexes. However, because we do not know how far these hypothesized evolutionary responses can actually proceed, the importance of intralocus sexual conflict as a long-term constraint on adaptive evolution remains unclear. In this study, we investigated the genetic architecture of sexual and nonsexual morphological traits in Prochyliza xanthostoma. The lowest rMF and greatest dimorphism were exhibited by two sexual traits (head length and antenna length) and, among all traits, the degree of sexual dimorphism was correlated negatively with rMF. Moreover, sexual traits exhibited reduced maternal heritabilities, and the most strongly dimorphic sexual trait (antenna length) was heritable only through the same-sex parent in offspring of both sexes. Our results support theory and suggest that intralocus sexual conflict can be resolved substantially by genomic adaptation. Further work is required to identify the proximate mechanisms underlying these patterns. 相似文献
2.
Interactions among mechanisms of sexual selection on male body size and head shape in a sexually dimorphic fly 总被引:4,自引:0,他引:4
Abstract Darwin envisaged male-male and male-female interactions as mutually supporting mechanisms of sexual selection, in which the best armed males were also the most attractive to females. Although this belief continues to predominate today, it has been challenged by sexual conflict theory, which suggests that divergence in the interests of males and females may result in conflicting sexual selection. This raises the empirical question of how multiple mechanisms of sexual selection interact to shape targeted traits. We investigated sexual selection on male morphology in the sexually dimorphic fly Prochyliza xanthostoma , using indices of male performance in male-male and male-female interactions in laboratory arenas to calculate gradients of direct, linear selection on male body size and an index of head elongation. In male-male combat, the first interaction with a new opponent selected for large body size but reduced head elongation, whereas multiple interactions with the same opponent favored large body size only. In male-female interactions, females preferred males with relatively elongated heads, but male performance of the precopulatory leap favored large body size and, possibly, reduced head elongation. In addition, the amount of sperm transferred (much of which is ingested by females) was an increasing function of both body size and head elongation. Thus, whereas both male-male and male-female interactions favored large male body size, male head shape appeared to be subject to conflicting sexual selection. We argue that conflicting sexual selection may be a common result of divergence in the interests of the sexes. 相似文献
3.
Simona Kralj‐Fier Kate L. Laskowski Francisco Garcia‐Gonzalez 《Ecology and evolution》2019,9(18):10758-10766
Sex differences in the genetic architecture of behavioral traits can offer critical insight into the processes of sex‐specific selection and sexual conflict dynamics. Here, we assess genetic variances and cross‐sex genetic correlations of two personality traits, aggression and activity, in a sexually size‐dimorphic spider, Nuctenea umbratica. Using a quantitative genetic approach, we show that both traits are heritable. Males have higher heritability estimates for aggressiveness compared to females, whereas the coefficient of additive genetic variation and evolvability did not differ between the sexes. Furthermore, we found sex differences in the coefficient of residual variance in aggressiveness with females exhibiting higher estimates. In contrast, the quantitative genetic estimates for activity suggest no significant differentiation between males and females. We interpret these results with caution as the estimates of additive genetic variances may be inflated by nonadditive genetic effects. The mean cross‐sex genetic correlations for aggression and activity were 0.5 and 0.6, respectively. Nonetheless, credible intervals of both estimates were broad, implying high uncertainty for these estimates. Future work using larger sample sizes would be needed to draw firmer conclusions on how sexual selection shapes sex differences in the genetic architecture of behavioral traits. 相似文献
4.
Multivariate genetic architecture of the Anolis dewlap reveals both shared and sex‐specific features of a sexually dimorphic ornament 下载免费PDF全文
R. M. Cox R. A. Costello B. E. Camber J. W. McGlothlin 《Journal of evolutionary biology》2017,30(7):1262-1275
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the ‘laws of inheritance’. Although a number of studies have supported this view by demonstrating substantial between‐sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative‐genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half‐sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance–covariance structure ( G ) that is broadly similar in males ( G m) and females ( G f). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between‐sex genetic correlations (rmf), sexually dimorphic features, such as area and brightness, exhibit reduced rmf values that do not differ from zero. Using a modified random skewers analysis, we show that the between‐sex genetic variance–covariance matrix ( B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. 相似文献
5.
The maintenance of genetic variation in traits under strong sexual selection is a longstanding problem in evolutionary biology. The genic capture model proposes that this problem can be explained by the evolution of condition dependence in exaggerated male traits. We tested the predictions that condition dependence should be more pronounced in male sexual traits and that genetic variance in expression of these traits should increase under stress as among‐genotype variation in overall condition is exposed. Genetic variance in female and nonsexual traits should, by contrast, be similar across environments as a result of stabilizing selection on trait expression. The relationship between the degree of sexual dimorphism, condition dependence and additive genetic variance (Va) was assessed for two morphological traits (body size and relative fore femur width) affecting male mating success in the black scavenger fly Sepsis punctum (Diptera: Sepsidae) and for development time (a nonsexual trait often correlated with body size). We compared trait expression between the sexes for two cross‐continental populations that differ in degree of sexual dimorphism (Ottawa and Zurich). Condition dependence was indeed most pronounced in males of the strongly dimorphic Zurich population (males larger), and Va was similar for males and females unless the trait was strongly sex specific and condition dependent. Contrary to prediction, however, Va primarily increased under food limitation in both sexes, and genetic variance in fore femur width was low to nil, perhaps depleted by putatively strong sexual selection. Solely for body size of Zurich males, Va increased more in males than females at limited food, in accordance with the predictions of the genic capture model. Overall therefore, quantitative genetic evidence in support of the model was inconsistent and weak at best. 相似文献
6.
Sexual dimorphism in lizard body shape: the roles of sexual selection and fecundity selection 总被引:5,自引:0,他引:5
Olsson M Shine R Wapstra E Uivari B Madsen T 《Evolution; international journal of organic evolution》2002,56(7):1538-1542
Sexual dimorphism is widespread in lizards, with the most consistently dimorphic traits being head size (males have larger heads) and trunk length (the distance between the front and hind legs is greater in females). These dimorphisms have generally been interpreted as follows: (1) large heads in males evolve through male-male rivalry (sexual selection); and (2) larger interlimb lengths in females provide space for more eggs (fecundity selection). In an Australian lizard (the snow skink, Niveoscincus microlepidotus), we found no evidence for ongoing selection on head size. Trunk length, however, was under positive fecundity selection in females and under negative sexual selection in males. Thus, fecundity selection and sexual selection work in concert to drive the evolution of sexual dimorphism in trunk length in snow skinks. 相似文献
7.
Sexually selected traits that are costly are predicted to be more condition dependent than nonsexually selected traits. Assuming resource limitation, increased allocation to a sexually selected trait may also come at a cost to other fitness components. To test these predictions, we varied adult food ration to manipulate condition in the colour dimorphic bug, Phymata americana. We compared the degree of condition dependence in a sexually selected trait expressed in males to a nonsexually selected trait expressed in males and females. We also evaluated the effects of condition on longevity of both sexes. We found that the expression of these colour pattern traits was strongly influenced by both diet and age. As expected, the strength of condition dependence was much more pronounced in the sexually selected, male-limited trait but the nonsexual trait also exhibited significant condition dependence in both sexes. The sexually selected male trait also exhibited a higher coefficient of phenotypic variation than the nonsexually selected trait in males and females. Diet had contrasting effects on male and female longevity; increased food availability had positive effects on female lifespan but these effects were not detected in males, suggesting that males allocated limited resources preferentially to sexually selected traits. These results are consistent with the expectation that optimal allocation to various fitness components differs between the sexes. 相似文献
8.
Sexually antagonistic genetic variation can pose limits to the independent evolution and adaptation of the sexes. The extent of sexually antagonistic variation is reflected in the intersex genetic correlation for fitness (rwFM). Previous estimates of this correlation have been mostly limited to populations in environments to which they are already well adapted, making it difficult to gauge the importance of sexually antagonistic genetic variance during the early stages of adaptation, such as that occurring following abrupt environmental change or upon the colonization of new habitat. Here we assayed male and female lifetime fitness in a population of Drosophila serrata in four novel laboratory environments. We found that rwFM varied significantly across environments, with point estimates ranging from positive to negative values of considerable magnitude. We also found that the variability among estimates was because, at least in part, of significant differences among environments in the genetic variances of both male and female fitness, with no evidence of any significant changes in the intersex covariance itself, although standard errors of these estimates were large. Our results illustrate the unpredictable nature of rwFM in novel environments and suggest that, although sexually antagonistic genetic variance can be pronounced in some novel environments, it may have little effect in constraining the early stages of adaptation in others. 相似文献
9.
Sexual selection and condition dependence of courtship display in three species of horned dung beetles 总被引:1,自引:0,他引:1
Sexual selection has traditionally been divided into competitionover mates and mate choice. Currently, models of sexual selectionpredict that sexual traits are expressed in proportion to thecondition of their bearer. In horned beetles, male contestcompetition is well established, but studies on female preferencesare scarce. Here I present data on male mating success and
condition dependence of courtship rate in three species of horn-dimorphicdung beetles, Onthophagus taurus, Onthophagus binodis, andOnthophagus australis. I found that in the absence of malecontest competition, mating success of O. taurus and O. australiswas unrelated to their horn length and body size, whereas inO. binodis horn size had a negative effect but body size hada positive effect on male mating success. Overall, in O. binodismajor morph males had greater mating success than minor morphmales. In all three species male mating success was affectedby courtship rate, and the courtship rate was condition dependent
such that when males were manipulated to be in poor conditionthey had lower courtship rates than males that were manipulatedto be in good condition. My findings provide new insight intothe mating systems of horned dung beetles and support an importantassumption in indicator models of sexual selection. 相似文献
10.
Candolin U 《Evolution; international journal of organic evolution》2004,58(8):1861-1864
Female choice and male-male competition are traditionally considered to act in concert, with male competition facilitating female choice. This situation would enforce the strength of directional selection, which could reduce genetic variation and thus the benefits of choice. Here I show that in a water boatman, Sigara falleni, the direction of selection through female choice and male competition vary among traits under laboratory conditions. The two forces were mutually enforcive in acting on body size but exerted opposing selection on a sexually selected trait, male foreleg pala size. Female choice favored large palae, whereas male competition favored smaller palae, suggesting that large palae are costly in competition. This conflicting selection through female choice and male competition could be one of the forces that contribute to the maintenance of genetic variation in sexually selected traits. 相似文献
11.
X. BONNET F. LAGARDE B. T. HENEN J. CORBIN K. A. NAGY G. NAULLEAU K. BALHOUL O. CHASTEL A. LEGRAND R. CAMBAG 《Biological journal of the Linnean Society. Linnean Society of London》2001,72(3):357-372
Selective forces shape sexes differently, with male body proportions facing strong selection to enhance mate searching and male-to-male combat traits, and female fitness being influenced by the ability to assimilate large amounts of nutrients necessary for vitellogenesis (and/or gestation), and their ability to carry the eggs or embryos. We evaluated the sexual dimorphism of body proportion of more than 800 wild steppe tortoises (Testudo horsfieldii) in Uzbekistan. The thick, well-developed shell offers protection from predators but pronounced digging habits probably also constrain body shape (e.g. a shell that is dorso-ventrally flattened, although round from a dorsal view helps to penetrate into, and move within the soil). Thus, in this species, natural selection might favour a heavy and flat shell that is 'closed' with small openings for appendages. In males, these environmental influences appear to be countered by sexual selection. Compared to females, they weigh less (absolutely and relative to shell dimensions), have longer legs, have shell structure allowing wider movements for their legs, and they walk faster. Males were also able to right themselves more quickly than females did in experimental tests. This quick righting ability is critical because intra-sexual combats frequently result in males being flipped onto their backs and becoming prone to hyperthermia or predation. Females are heavily built, with wide shells (relative to male shells), which may provide space for carrying eggs. From our results, a number of simple hypotheses can be tested on a wide range of chelonian species. 相似文献
12.
A precise method was used for estimating the proportion of heritable variation in two life history parameters of the yellow dung fly, whereby environmental components of variance were minimized. Significant heritable variation for body size was revealed for father to son and mother to daughter relationships. Variation in development time was not significantly heritable. There is a marked sexual dimorphism in body size in this species which is discussed in the light of the observed sex-genotype interaction in heritabilities and low genetic correlation for size between the sexes. It is suggested that opposing pressures of sexual and natural selection and/or genetic pleotropy may be responsible for the maintenance of heritable variation, and the evolution of sexual dimorphism in these two traits. 相似文献
13.
JF Schaefer DD Duvernell BR Kreiser C Champagne SR Clark M Gutierrez LK Stewart C Coleman 《Ecology and evolution》2012,2(7):1371-1381
Understanding the interaction between sexual and natural selection within variable environments is crucial to our understanding of evolutionary processes. The handicap principle predicts females will prefer males with exaggerated traits provided those traits are indicators of male quality to ensure direct or indirect female benefits. Spatial variability in ecological factors is expected to alter the balance between sexual and natural selection that defines the evolution of such traits. Male and female blackspotted topminnows (Fundulidae: Fundulus olivaceus) display prominent black dorsolateral spots that are variable in number across its broad range. We investigated variability in spot phenotypes at 117 sites across 13 river systems and asked if the trait was sexually dimorphic and positively correlated with measures of fitness (condition and gonadosomatic index [GSI]). Laboratory and mesocosm experiments assessed female mate choice and predation pressure on spot phenotypes. Environmental and community data collected at sampling locations were used to assess predictive models of spot density at the individual, site, and river system level. Greater number of spots was positively correlated with measures of fitness in males. Males with more spots were preferred by females and suffered greater mortality due to predation. Water clarity (turbidity) was the best predictor of spot density on the drainage scale, indicating that sexual and natural selection for the trait may be mediated by local light environments. 相似文献
14.
Melissa N. Liotta Jessica K. Abbott Molly R. Morris Oscar RiosCardenas 《Ecology and evolution》2021,11(9):3941
Alternative reproductive tactics (ARTs) have provided valuable insights into how sexual selection and life history trade‐offs can lead to variation within a sex. However, the possibility that tactics may constrain evolution through intralocus tactical conflict (IATC) is rarely considered. In addition, when IATC has been considered, the focus has often been on the genetic correlations between the ARTs, while evidence that the ARTs have different optima for associated traits and that at least one of the tactics is not at its optimum is often missing. Here, we investigate selection on three traits associated with the ARTs in the swordtail fish Xiphophorus multilineatus; body size, body shape, and the sexually selected trait for which these fishes were named, sword length (elongation of the caudal fin). All three traits are tactically dimorphic, with courter males being larger, deeper bodied and having longer swords, and the sneaker males being smaller, more fusiform and having shorter swords. Using measures of reproductive success in a wild population we calculated selection differentials, as well as linear and quadratic gradients. We demonstrated that the tactics have different optima and at least one of the tactics is not at its optimum for body size and sword length. Our results provide the first evidence of selection in the wild on the sword, an iconic trait for sexual selection. In addition, given the high probability that these traits are genetically correlated to some extent between the two tactics, our study suggests that IATC is constraining both body size and the sword from reaching their phenotypic optima. We discuss the importance of considering the role of IATC in the evolution of tactical dimorphism, how this conflict can be present despite tactical dimorphism, and how it is important to consider this conflict when explaining not only variation within a species but differences across species as well. 相似文献
15.
J. Poissant M. B. Morrissey A. G. Gosler J. Slate B. C. Sheldon 《Journal of evolutionary biology》2016,29(10):2022-2035
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra‐ and intersex additive genetic (co)variances and sex‐specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex‐specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex‐specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross‐sex genetic correlation = ?0.003, 95% CI = ?0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex‐specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC. 相似文献
16.
Quantitative genetics and sex-specific selection on sexually dimorphic traits in bighorn sheep 总被引:1,自引:0,他引:1
Poissant J Wilson AJ Festa-Bianchet M Hogg JT Coltman DW 《Proceedings. Biological sciences / The Royal Society》2008,275(1635):623-628
Sexual conflict at loci influencing traits shared between the sexes occurs when sex-specific selection pressures are antagonistic relative to the genetic correlation between the sexes. To assess whether there is sexual conflict over shared traits, we estimated heritability and intersexual genetic correlations for highly sexually dimorphic traits (horn volume and body mass) in a wild population of bighorn sheep (Ovis canadensis) and quantified sex-specific selection using estimates of longevity and lifetime reproductive success. Body mass and horn volume showed significant additive genetic variance in both sexes, and intersexual genetic correlations were 0.24+/-0.28 for horn volume and 0.63+/-0.30 for body mass. For horn volume, selection coefficients did not significantly differ from zero in either sex. For body weight, selection coefficients were positive in females but did not differ from zero in males. The absence of detectable sexually antagonistic selection suggests that currently there are no sexual conflicts at loci influencing horn volume and body mass. 相似文献
17.
The evolution of sexual dimorphism will depend on how sexual, fecundity and viability selection act within each sex, with the different forms of selection potentially operating in opposing directions. We examined selection in the dioecious plant Silene latifolia using planted arrays of selection lines that differed in flower size (small vs. large). In this species, a flower size/number trade-off exists within each sex, and males produce smaller and more numerous flowers than females. Moreover, floral traits are genetically correlated with leaf physiology. Sexual selection favoring males in the small-flower line occurred via greater overlap in the timing of flower output between males from this line and females. Fecundity selection favored males with high flower production, as siring success was proportionate to pollen production. Viability selection opposed sexual selection, favoring males from the large-flower line. In females, fecundity and viability selection operated in the same direction, favoring those from the large-flower line via greater seed production and survival. These results concur with the pattern of floral sexual dimorphism. Together with previous results they suggest that the outcome of the different forms of selection will be environmentally dependent, and therefore help to explain variation among populations in sexually dimorphic traits. 相似文献
18.
Adult body size and shape were examined in almost 1400 individuals of the tortoises Testudo graeca , T. hermanni and T. marginata from Greece. The size at maturity was greater in females than in males in all three species. Maximum and mean adult sizes were also greater in females than in males in T. graeca and T. hermanni . Males grew to a larger size than females in T. marginata , and mean adult size was similar in the sexes in this species. Sexual dimorphism of shape (adjusted for size covariate) was shown in most of the characters examined, and the degree of this dimorphism differed significantly among the three species. Differences were related to their contrasting courtship behaviours: horizontal head movements and severe biting in T. marginata , vertical head bobs and carapace butting in T. graeca , and mounting and tail thrusting in T. hermanni . There was no difference in the frequency of observations of courtship or fighting among the three species, but courtship was about 10 times more common than combat in males. All species showed greatest courtship activity in autumn; copulation was rarely observed in T. hermanni (only 0.36% of courting males) and not seen in the other species in the field. Observations made throughout the activity season indicated that feeding was equally common in males and females in all three species. Differences in shape were more likely to be the result of sexual selection than of natural selection for fecundity. Detailed predictions are made for sexual dimorphism of other characters in these species. 相似文献
19.
Hine E Chenoweth SF Blows MW 《Evolution; international journal of organic evolution》2004,58(12):2754-2762
Single male sexually selected traits have been found to exhibit substantial genetic variance, even though natural and sexual selection are predicted to deplete genetic variance in these traits. We tested whether genetic variance in multiple male display traits of Drosophila serrata was maintained under field conditions. A breeding design involving 300 field-reared males and their laboratory-reared offspring allowed the estimation of the genetic variance-covariance matrix for six male cuticular hydrocarbons (CHCs) under field conditions. Despite individual CHCs displaying substantial genetic variance under field conditions, the vast majority of genetic variance in CHCs was not closely associated with the direction of sexual selection measured on field phenotypes. Relative concentrations of three CHCs correlated positively with body size in the field, but not under laboratory conditions, suggesting condition-dependent expression of CHCs under field conditions. Therefore condition dependence may not maintain genetic variance in preferred combinations of male CHCs under field conditions, suggesting that the large mutational target supplied by the evolution of condition dependence may not provide a solution to the lek paradox in this species. Sustained sexual selection may be adequate to deplete genetic variance in the direction of selection, perhaps as a consequence of the low rate of favorable mutations expected in multiple trait systems. 相似文献
20.
Standardized measures of the strength of selection on a character allow quantitative comparisons across populations in time and space. Spatiotemporal variation in selection influences patterns of adaptation and the evolution of characters and must therefore be documented. For the dung-breeding fly Sepsis cynipsea, we document patterns of variation in sexual, fecundity and larval and adult viability selection on body size at several spatiotemporal scales: between-populations, over the season, over the day and between dung pats. Adult viability selection based on residual physiological survivorship in the laboratory was nil or weakly negative. In contrast, larval viability selection in two laboratory environments was weakly positive for males at low competition and females at high competition. Fecundity selection was positive and strong at all times and in all populations. Sexual selection reflecting pairing success was overall strongly positive (about three times stronger than fecundity selection), while selection reflecting male reproductive success via the clutch size of his mate (i.e. assortative mating) was essentially nil. Only sexual selection varied significantly at coarse (between populations and seasonally) but not at fine (within a day or between pats on a pasture) spatial and temporal scales. Quadratic and correlational selection differentials were low and inconsistent in all episodes except for fecundity selection, where there was some evidence that clutch size reaches an asymptote at large body sizes, implying weaker selection for large size as females get bigger. Implications of these results for the evolution of body size and body size dimorphism are discussed. 相似文献