首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell wall of Candida albicans consists of an internal skeletal layer and an external protein coat. This coat has a mosaic-like nature, containing c . 20 different protein species covalently linked to the skeletal layer. Most of them are GPI proteins. Coat proteins vary widely in function. Many of them are involved in the primary interactions between C. albicans and the host and mediate adhesive steps or invasion of host cells. Others are involved in biofilm formation and cell–cell aggregation. They further include iron acquisition proteins, superoxide dismutases, and yapsin-like aspartic proteases. In addition, several covalently linked carbohydrate-active enzymes are present, whose precise functions remain hitherto largely elusive. The expression levels of the genes that encode covalently linked cell wall proteins (CWPs) can vary enormously. They depend on the mode of growth and the combined inputs of several signaling pathways that sense environmental conditions. This is reflected in the unusually long intergenic regions of most of these genes. Finally, the precise location of several covalently linked CWPs is temporally and spatially regulated. We conclude that covalently linked CWPs of C. albicans play a crucial role in fitness and virulence and that their expression is tightly controlled.  相似文献   

2.
Structural studies of cell wall components of the pathogenic yeast Candida albicans have demonstrated the presence of beta-1,2-linked oligomannosides in phosphopeptidomannan and phospholipomannan. During C. albicans infection, beta-1,2-oligomannosides play an important role in host/pathogen interactions by acting as adhesins and by interfering with the host immune response. Despite the importance of beta-1,2-oligomannosides, the genes responsible for their synthesis have not been identified. The main reason is that the reference species Saccharomyces cerevisiae does not synthesize beta-linked mannoses. On the other hand, the presence of beta-1,2-oligomannosides has been reported in the cell wall of the more genetically tractable C. albicans relative, P. pastoris. Here we present the identification, cloning, and characterization of a novel family of fungal genes involved in beta-mannose transfer. Employing in silico analysis, we identified a family of four related new genes in P. pastoris and subsequently nine homologs in C. albicans. Biochemical, immunological, and structural analyses following deletion of four genes in P. pastoris and deletion of four genes acting specifically on C. albicans mannan demonstrated the involvement of these new genes in beta-1,2-oligomannoside synthesis. Phenotypic characterization of the strains deleted in beta-mannosyltransferase genes (BMTs) allowed us to describe the stepwise activity of Bmtps and acceptor specificity. For C. albicans, despite structural similarities between mannan and phospholipomannan, phospholipomannan beta-mannosylation was not affected by any of the CaBMT1-4 deletions. Surprisingly, depletion in mannan major beta-1,2-oligomannoside epitopes had little impact on cell wall surface beta-1,2-oligomannoside antigenic expression.  相似文献   

3.
Oropharyngeal candidiasis (OPC) remains a common opportunistic infection in HIV-infected patients. Candida albicans is the most frequent causative agent of OPC. However, non-albicans spp. are being increasingly isolated. Candidal cell wall proteins and mannoproteins play important roles in the biology and patogenesis of candidiasis. In the present study, we have analyzed the proteinaceous components associated with cell wall extracts from C. albicans, Candida tropicalis, Candida pseudotropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, Candida guilliermondii and Candida rugosa obtained from HIV-infected patients with recurrent OPC. Cell wall proteinaceous components were extracted with beta-mercaptoethanol and analyzed using electrophoresis, immunoblotting (with antisera generated against C. albicans cell wall components, and with serum samples and oral saline rinses from patients with OPC), and lectin-blotting (concanavalin A) techniques. Numerous molecular species were solubilized from the various isolates. Major qualitative and quantitative differences in the polypeptidic and antigenic profiles associated with the cell wall extracts from the different Candida spp. were discernible. Some of the antibody preparations generated against C. albicans cell wall components were able to recognize homologous materials present in the extracts from non-albicans spp. Information on cell wall antigens of Candida species may be important in the therapy and prevention of HIV-related OPC.  相似文献   

4.
Mannoproteins are fungal cell wall components which play a main role in host-parasite relationship. Camp65p is a putative beta-glucanase mannoprotein of 65 kDa which has been characterized as a main target of human immune response against Candida albicans. However, nothing is known about its specific contribution to the biology and virulence of this fungus. We constructed CAMP65 knock-out mutants including null camp65/camp65 and CAMP65/camp65 heterozygous strains. The null strains had the same growth rate and morphology under yeast form as the wild-type strain but they were severely affected in hyphal morphogenesis both in vitro and in vivo. Hyphae formation was restored in revertant strains. The null mutants lost adherence to the plastic, and this was in keeping with the strong inhibition of fungal cell adherence to plastic exerted by anti-Camp65p antibodies. The null mutants were also significantly less virulent than the parental strains, and this loss of virulence was observed both in systemic and in mucosal C. albicans infection models. Nonetheless, the virulence in both infectious models was regained by the CAMP65 revertants. Thus, CAMP65 of C. albicans encodes a putative beta-glucanase, mannoprotein adhesin, which has a dual role (hyphal cell wall construction and virulence), accounting for the particular relevance of host immune response against this mannoprotein.  相似文献   

5.
Stimulation of cells of the macrophage lineage is a crucial step in the sensing of yeasts by the immune system. Glycans present in both Candida albicans and Saccharomyces cerevisiae cell walls have been shown to act as ligands for different receptors leading to different stimulating pathways, some of which need receptor co-involvement. However, among these ligand-receptor couples, none has been shown to discriminate the pathogenic yeast C. albicans. We explored the role of galectin-3, which binds C. albicans beta-1,2 mannosides. These glycans are specifically and prominently expressed at the surface of C. albicans but not on S. cerevisiae. Using a mouse cell line and galectin-3-deleted cells from knockout mice, we demonstrated a specific enhancement of the cellular response to C. albicans compared with S. cerevisiae, which depended on galectin-3 expression. However, galectin-3 was not required for recognition and endocytosis of yeasts. In contrast, using PMA-induced differentiated THP-1, we observed that the presence of TLR2 was required for efficient uptake and endocytosis of both C. albicans and S. cerevisiae. TLR2 and galectin-3, which are expressed at the level of phagosomes containing C. albicans, were shown to be associated in differentiated macrophages after incubation with this sole species. These data suggest that macrophages differently sense C. albicans and S. cerevisiae through a mechanism involving TLR2 and galectin-3, which probably associate for binding of ligands expressing beta-1,2 mannosides specific to the C. albicans cell wall surface.  相似文献   

6.
Candida albicans is one of the most common fungal pathogens in humans. The cell wall is the first contact site between host and pathogen and thus is critical for colonization and infection of the host. We have identified Tsa1p, a protein that is differentially localized to the cell wall of C. albicans in hyphal cells but remains in the cytosol and nucleus in yeast-form cells. This is different from Saccharomyces cerevisiae, where the homologous protein solely has been found in the cytoplasm. We report here that TSA1 confers resistance towards oxidative stress as well as is involved in the correct composition of hyphal cell walls. However, no significant change of the cell wall composition was observed in a TSA1 deletion strain in yeast-form cells, which is in good agreement with the observation that Tsa1p is absent from the yeast-form cell wall. This indicates that Tsa1p of C. albicans might represent a moonlighting protein with specific functions correlating to its respective localization. Furthermore, the translocation of Tsa1p to the hyphal cell wall of C. albicans depends on Efg1p, suggesting a contribution of the cAMP/PKA pathway to the localization of this protein. In a strain deleted for TUP1 that filaments constitutively Tsa1p can be found in the cell wall under all conditions tested, confirming the result that Tsa1p localization to the cell wall is correlated to the morphology of C. albicans.  相似文献   

7.
The pathogenic yeast Candida albicans has the ability to synthesize unique sequences of beta-1,2-oligomannosides that act as adhesins, induce cytokine production, and generate protective antibodies. Depending on the growth conditions, beta-1,2-oligomannosides are associated with different carrier molecules in the cell wall. Structural evidence has been obtained for the presence of these residues in the polysaccharide moiety of the glycolipid, phospholipomannan (PLM). In this study, the refinement of purification techniques led to large quantities of PLM being extracted from Candida albicans cells. A combination of methanolysis, gas chromatography, mass spectrometry, and nuclear magnetic resonance analyses allowed the complete structure of PLM to be deduced. The lipid moiety was shown to consist of a phytoceramide associating a C(18)/C(20) phytosphingosine and C(25), C(26), or mainly C(24) hydroxy fatty acids. The spacer linking the glycan part was identified as a unique structure: -Man-P-Man-Ins-P-. Therefore, in contrast to the major class of membranous glycosphingolipids represented by mannose diinositol phosphoceramide, which is derived from mannose inositol phosphoceramide by the addition of inositol phosphate, PLM seems to be derived from mannose inositol phosphoceramide by the addition of mannose phosphate. In relation to a previous study of the glycan part of the molecule, the assignment of the second phosphorus position leads to the definition of PLM beta-1,2-oligomannosides as unbranched linear structures that may reach up to 19 residues in length. Therefore, PLM appears to be a new type of glycosphingolipid, which is glycosylated extensively through a unique spacer. The conferred hydrophilic properties allow PLM to diffuse into the cell wall in which together with mannan it presents C. albicans beta-1,2-oligomannosides to host cells.  相似文献   

8.
The fungal cell surface contributes to pathogenesis by mediating interactions with host cells and eliciting host immune responses. This review focuses on the cell wall proteome of the major fungal pathogen Candida albicans and discusses how diversity at the cell surface can be introduced by altering the expression and structure of cell wall proteins. Remodelling the cell wall architecture is critical to maintain cellular integrity in response to different environments and stresses including challenge with antifungal drugs. In addition, the dynamic nature of the cell surface alters the physical properties of the fungal interface with host cells and thereby influences adhesion to the host and recognition by components of the host's immune system. Examples of the role of cell surface diversity in the pathogenesis of a number of microorganisms are described.  相似文献   

9.
An imbalance of the normal microbial flora, breakage of epithelial barriers or dysfunction of the immune system favour the transition of the human pathogenic yeast Candida albicans from a commensal to a pathogen. C. albicans has evolved to be adapted as a commensal on mucosal surfaces. As a commensal it has also acquired attributes, which are necessary to avoid or overcome the host defence mechanisms. The human host has also co-evolved to recognize and eliminate potential fungal invaders. Many of the fungal genes that have been the focus of this co-evolutionary process encode cell wall components. In this review, we will discuss the transition from commensalism to pathogenesis, the key players of the fungal cell surface that are important for this transition, the role of the morphology and the mechanisms of host recognition and response.  相似文献   

10.
Oral fibroblasts as well as keratinocytes are thought to influence host inflammatory responses against Candida albicans. However, little is known about chemokine expressions in oral fibroblasts against C. albicans infection. We therefore examined whether C. albicans induced several chemokines including fractalkine/CX3CL1 (CX3CL1), a unique chemokine that has properties of both chemoattractants and adhesion molecules, in fibroblasts and keratinocytes. The addition of C. albicans live cells to human immortalized oral keratinocytes (RT7) resulted in increases in the mRNA levels of multiple chemokines, but not of CX3CL1. In contrast, live and heat-killed C. albicans caused an increase in CX3CL1 mRNA and protein expression in human immortalized oral fibroblasts (GT1). CX3CL1 mRNA expression in GT1 cells was also enhanced by stimulation with a nonalbicans species of Candida. Further, the CX3CL1 chemokine domain showed antifungal activity against C. albicans. CX3CL1 secreted by oral fibroblasts appears to play an important role in the oral immune response to C. albicans infection.  相似文献   

11.
Candida albicans is one of the most important opportunistic pathogenic fungi. Weakening of the defense mechanisms of the host, and the ability of the microorganism to adapt to the environment prevailing in the host tissues, turn the fungus from a rather harmless saprophyte into an aggressive pathogen. The disease, candidiasis, ranges from light superficial infections to deep processes that endanger the life of the patient. In the establishment of the pathogenic process, the cell wall of C. albicans (as in other pathogenic fungi) plays an important role. It is the outer structure that protects the fungus from the host defense mechanisms and initiates the direct contact with the host cells by adhering to their surface. The wall also contains important antigens and other compounds that affect the homeostatic equilibrium of the host in favor of the parasite. In this review, we discuss our present knowledge of the structure of the cell wall of C. albicans, the synthesis of its different components, and the mechanisms involved in their organization to give rise to a coherent composite. Furthermore, special emphasis has been placed on two further aspects: how the composition and structure of C. albicans cell wall compare with those from other fungi, and establishing the role of some specific wall components in pathogenesis. From the data presented here, it becomes clear that the composition, structure and synthesis of the cell wall of C. albicans display both subtle and important differences with the wall of different saprophytic fungi, and that some of these differences are of utmost importance for its pathogenic behavior.  相似文献   

12.
Fungal pathogens are a frequent cause of opportunistic infections. They live as commensals in healthy individuals but can cause disease when the immune status of the host is altered. T lymphocytes play a critical role in pathogen control. However, specific Ags determining the activation and function of antifungal T cells remain largely unknown. By using an immunoproteomic approach, we have identified for the first time, to our knowledge, a natural T cell epitope from Candida albicans. Isolation and sequencing of MHC class II-bound ligands from infected dendritic cells revealed a peptide that was recognized by a major population of all Candida-specific Th cells isolated from infected mice. Importantly, human Th cells also responded to stimulation with the peptide in an HLA-dependent manner but without restriction to any particular HLA class II allele. Immunization of mice with the peptide resulted in a population of epitope-specific Th cells that reacted not only with C. albicans but also with other clinically highly relevant species of Candida including the distantly related Candida glabrata. The extent of the reaction to different Candida species correlated with their degree of phylogenetic relationship to C. albicans. Finally, we show that the newly identified peptide acts as an efficient vaccine when used in combination with an adjuvant inducing IL-17A secretion from peptide-specific T cells. Immunized mice were protected from fatal candidiasis. Together, these results uncover a new immune determinant of the host response against Candida ssp. that could be exploited for the development of antifungal vaccines and immunotherapies.  相似文献   

13.
The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to inhibit effective destruction by host phagocytes. Using live cell video microscopy, we show here for the first time that C. albicans inhibits cell division in macrophages undergoing mitosis. Inhibition of macrophage cell division is dependent on the ability of C. albicans to form hyphae, as it is rarely observed following phagocytosis of UV-killed or morphogenesis-defective mutant Candida. Interestingly, failed cell division following phagocytosis of hyphal C. albicans is surprisingly common, and leads to the formation of large multinuclear macrophages. This raises question as to whether inhibition of macrophage cell division is another virulence attribute of C. albicans or enables host macrophages to contain the pathogen.  相似文献   

14.
The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.  相似文献   

15.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

16.
The yeast cell wall is a crucial extracellular organelle that protects the cell from lysis during environmental stress and morphogenesis. Here, we demonstrate that the yapsin family of five glycosylphosphatidylinositol-linked aspartyl proteases is required for cell wall integrity in Saccharomyces cerevisiae. Yapsin null mutants show hypersensitivity to cell wall perturbation, and both the yps1Delta2Delta mutant and the quintuple yapsin mutant (5ypsDelta) undergo osmoremedial cell lysis at 37 degrees C. The cell walls of both 5ypsDelta and yps1Delta2Delta mutants have decreased amounts of 1,3- and 1,6-beta-glucan. Although there is decreased incorporation of both 1,3- and 1,6-beta-glucan in the 5ypsDelta mutant in vivo, in vitro specific activity of both 1,3- and 1,6-beta-glucan synthesis is similar to wild type, indicating that the yapsins affect processes downstream of glucan synthesis and that the yapsins may be involved in the incorporation or retention of cell wall glucan. Presumably as a response to the significant alterations in cell wall composition, the cell wall integrity mitogen-activated kinase signaling cascade (PKC1-MPK pathway) is basally active in 5ypsDelta. YPS1 expression is induced during cell wall stress and remodeling in a PKC1-MPK1-dependent manner, indicating that Yps1p is a direct, and important, output of the cell wall integrity response. The Candida albicans (SAP9) and Candida glabrata (CgYPS1) homologues of YPS1 complement the phenotypes of the yps1Delta mutant. Taken together, these data indicate that the yapsins play an important role in glucan homeostasis in S. cerevisiae and that yapsin homologues may play a similar role in the pathogenic yeasts C. albicans and C. glabrata.  相似文献   

17.
Cutler JE  Corti M  Lambert P  Ferris M  Xin H 《PloS one》2011,6(7):e22030
Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis.  相似文献   

18.
Genetics of Candida albicans.   总被引:34,自引:1,他引:34       下载免费PDF全文
Candida albicans is among the most common fungal pathogens. Infections caused by C. albicans and other Candida species can be life threatening in individuals with impaired immune function. Genetic analysis of C. albicans pathogenesis is complicated by the diploid nature of the species and the absence of a known sexual cycle. Through a combination of parasexual techniques and molecular approaches, an effective genetic system has been developed. The close relationship of C. albicans to the more extensively studied Saccharomyces cerevisiae has been of great utility in the isolation of Candida genes and development of the C. albicans DNA transformation system. Molecular methods have been used for clarification of taxonomic relationships and more precise epidemiologic investigations. Analysis of the physical and genetic maps of C. albicans and the closely related Candida stellatoidea has provided much information on the highly fluid nature of the Candida genome. The genetic system is seeing increased application to biological questions such as drug resistance, virulence determinants, and the phenomenon of phenotypic variation. Although most molecular analysis to data has been with C. albicans, the same methodologies are proving highly effective with other Candida species.  相似文献   

19.
Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.  相似文献   

20.
Candida albicans is among the most common fungal pathogens. Infections caused by C. albicans and other Candida species can be life threatening in individuals with impaired immune function. Genetic analysis of C. albicans pathogenesis is complicated by the diploid nature of the species and the absence of a known sexual cycle. Through a combination of parasexual techniques and molecular approaches, an effective genetic system has been developed. The close relationship of C. albicans to the more extensively studied Saccharomyces cerevisiae has been of great utility in the isolation of Candida genes and development of the C. albicans DNA transformation system. Molecular methods have been used for clarification of taxonomic relationships and more precise epidemiologic investigations. Analysis of the physical and genetic maps of C. albicans and the closely related Candida stellatoidea has provided much information on the highly fluid nature of the Candida genome. The genetic system is seeing increased application to biological questions such as drug resistance, virulence determinants, and the phenomenon of phenotypic variation. Although most molecular analysis to data has been with C. albicans, the same methodologies are proving highly effective with other Candida species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号