首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) in the antitumor response, we propagated these subsets directly from tumor tissues with anti-CD3:anti-CD8 (CD3,8) and anti-CD3:anti-CD4 (CD3,4) bispecific mAb (BSMAB). CD3,8 BSMAB cause selective cytolysis of CD8+ lymphocytes by bridging the CD8 molecules of target lymphocytes to the CD3 molecular complex of cytolytic T lymphocytes with concurrent activation and proliferation of residual CD3+CD4+ T lymphocytes. Similarly, CD3,4 BSMAB cause selective lysis of CD4+ lymphocytes whereas concurrently activating the residual CD3+CD8+ T cells. Small tumor fragments from four malignant melanoma and three renal cell carcinoma patients were cultured in medium containing CD3,8 + IL-2, CD3,4 + IL-2, or IL-2 alone. CD3,8 led to selective propagation of the CD4+ TIL whereas CD3,4 led to selective propagation of the CD8+ TIL from each of the tumors. The phenotypes of the TIL subset cultures were generally stable when assayed over a 1 to 3 months period and after further expansion with anti-CD3 mAb or lectins. Specific 51Cr release of labeled target cells that were bridged to the CD3 molecular complexes of TIL suggested that both CD4+ and CD8+ TIL cultures have the capacity of mediating cytolysis via their Ti/CD3 TCR complexes. In addition, both CD4+ and CD8+ TIL cultures from most patients caused substantial (greater than 20%) lysis of the NK-sensitive K562 cell line. The majority of CD4+ but not CD8+ TIL cultures also produced substantial lysis of the NK-resistant Daudi cell line. Lysis of the autologous tumor by the TIL subsets was assessed in two patients with malignant melanoma. The CD8+ TIL from one tumor demonstrated cytotoxic activity against the autologous tumor but negligible lysis of allogeneic melanoma targets. In conclusion, immunocompetent CD4+ and CD8+ TIL subsets can be isolated and expanded directly from small tumor fragments of malignant melanoma and renal cell carcinoma using BSMAB. The resultant TIL subsets can be further expanded for detailed studies or for adoptive immunotherapy.  相似文献   

2.
Tumor-infiltrating lymphocytes (TIL) were derived from primary breast tumors, metastatic lymph nodes and malignant pleural effusions from 34 patients with breast cancer. TIL were cultured for approximately 30 days and studied for phenotype, cytotoxicity, and the ability to secrete cytokines in response to autologous tumor stimulation. Tumor specimens were obtained from two different sites in 7 patients, resulting in 41 samples from which 38 TIL cultures were established. In addition to screening 38 bulk TIL cultures, TIL from 21 patients were separated into CD4+ and CD8+ subsets and extensively studied. Three CD4+ TIL were found specifically to secrete granulocyte macrophage-colony-stimulating factor and tumor necrosis factor when stimulated by autologous tumor and not by a large panel of stimulators (24–34) consisting of autologous normal cells, allogeneic breast or melanoma tumors and EBV-B cells. This cytokine release was found to be MHC-class-II-restricted, as it was inhibited by the anti-HLA-DR antibody L243. These 3 patients' EBV-B cells, when pulsed with tumor lysates, were unable to act as antigen-presenting cells and induce cytokine secretion by their respective CD4+ TIL. These findings demonstrate that MHC-class-II-restricted CD4+ T cells recognising tumor-associated antigens can be detected in some breast cancer patients.  相似文献   

3.
Three predominantly CD8+ CTL lines, TIL 501, TIL 620, and TIL 660, were generated from three HLA-A2+ melanoma patients by culturing tumor-infiltrating lymphocytes in 1000 U/ml IL-2. These tumor-infiltrating lymphocytes lysed 12 of 18 HLA-A2+ autologous and allogeneic melanomas, but none of 20 HLA-A2-negative melanomas. They also did not lyse the MHC class I negative lymphoma-leukemia cell lines, Daudi, K562, or HLA-A2+ non-melanoma cell lines including PHA or Con A-induced lymphoblast, fibroblast, EBV-transformed B cell, Burkitt's B cell lymphoma, and colon cancer cell lines. Autologous and allogeneic melanoma lysis was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag among melanoma cell lines in a TCR-dependent, HLA-A2-restricted manner. Six HLA-A2-negative melanoma cell lines obtained from five HLA-A2-negative patients were co-transfected with the HLA-A2.1 gene and pSV2neo. All 17 cloned transfectants expressing cell surface HLA-A2 molecules, but none of 12 transfectants lacking HLA-A2 expression, were lysed by these three HLA-A2-restricted, melanoma-specific CTL. Lysis of the HLA-A2+ transfectants was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag on transfectants in a TCR-dependent, HLA-A2-restricted manner. These results identify the HLA-A2.1 molecule as an Ag-presenting molecule for melanoma Ag. They also suggest that common melanoma Ag are expressed among melanoma patients regardless of HLA type. These findings have implications for the development of melanoma vaccines that would induce antitumor T cell responses.  相似文献   

4.
Tumour-infiltrating lymphocytes (TIL) and tumours from six patients with squamous cell carcinomas of the head and neck (SCCHN) were investigated. The six tumours all expressed major histocompatibility complex (MHC) class I antigens both in vivo and as tumor cell lines grown in vitro. In addition, the cancer cells either overexpressed the tumour-suppressor gene product p53 or harboured human papilloma virus 16/18 (HPV). The TIL were expanded in vitro in the presence of interleukin-2, immobilised anti-CD3 mAb and soluble anti-CD28 mAb. Expanded TIL cultures contained both CD4+and CD8+T cells, but generally contained few CD56+CD3-cells of the natural killer (NK) phenotype. CD8+T cells dominated the individual TIL cultures from five of the six patients and showed significant autologous tumour cell lysis. In TIL cultures derived from four of these tumour-reactive TIL cultures, killing could be partially blocked by an anti-MHC class I mAb. TIL cultures reacting with autologous tumour cells also showed strong TCR/CD3-redirected cytotoxicity when assayed against hybridoma cells expressing anti-TCR/CD3 mAb as well as natural-killer(NK)-like activity. A number of TIL cultures devoid of autologous tumour cell lysis were capable of lysing the natural-killer(NK)-sensitive K562 cell line suggesting that the SCCHN cells themselves are resistant to NK-like lysis. In conclusion, TIL cultures from head and neck carcinomas contain T cells which, upon expansion in vitro, can lyse autologous tumour cells in a MHC-class-I-restricted fashion. Thus, the results of the present study document that carcinomas of the head and neck in some patients are infiltrated by cytotoxic T cell precursors potentially capable of rejecting the autologous tumour.  相似文献   

5.
Two long-term tumor-infiltrating lymphocyte (TIL) lines and their autologous tumor lines have been established from solid tumors derived from different patients with metastatic melanoma. In 4-hr 51Cr release assays, each TIL culture lysed only the autologous cryopreserved fresh or established melanoma line, but failed to lyse other melanoma tumors or K562 cells. Repeated stimulation of TIL with the autologous melanoma lines resulted in significant increases in anti-tumor CTL activity with no apparent loss in specificity. Stimulated cells have retained cytotoxic activity for up to 5 months in culture. Tumor cell CTL activity for both long-term TIL lines is inhibited by several mAbs, including those against CD3, CD8, and class I MHC molecules, indicating that the effector cells are class I-restricted CD8+, CTL. Furthermore, recognition of Ag on one of the established melanoma lines by TIL is restricted by HLA A-2. The availability of autologous tumor lines may prove clinically useful for the selective stimulation and expansion of cells with anti-tumor activity within a heterogeneous TIL population.  相似文献   

6.
Summary Tumor-infiltrating lymphocytes (TIL) were grown in the presence of interleukin-2 from 19 colon carcinoma specimens, including 1 primary lesion and 18 metastatic lesions. These cultures showed a median proliferation of 606-fold (range 13-fold to 28 000-fold) over 49 culture days (range 26–76 days). By phenotype, mature cultures were 69%–99% CD3+ (mean 93%) and contained mixed populations of CD4+ and CD8+ cells (CD4>CD8 in 10 of 19 cultures). Fresh cryopreserved colon tumors were not lysed by autologous TIL in short-term51Cr-release assays, and were poorly lysed by lymphokine-activated killer cells. Ten TIL cultures were assayed for cytokine secretion in response to autologous and allogeneic tumors during a 6- to 24-h coincubation. Culture supernatants were tested by ELISA for the presence of granulocyte/macrophage-colony-stimulating factor, interferon , and tumor necrosis factor . Of 10 TIL, 4 secreted at least two of these cytokines specifically in response to autologous and/or HLA-matched fresh allogeneic colon carcinomas, but not to melanomas or HLA-unmatched colon carcinomas. Cytokine secretion was mediated by both CD4+ and CD8+ TIL, and could be inhibited by mAb directed against the appropriate class of MHC antigen. These data provide evidence for specific, MHC-restricted immune recognition of human colon carcinomas by T lymphocytes.  相似文献   

7.
Tumor-specific cytolysis by lymphocytes infiltrating human melanomas   总被引:23,自引:0,他引:23  
Tumor infiltrating lymphocytes (TIL) were grown in IL-2 from single cell tumor suspensions of 14 human melanomas resected from 12 patients. As a function of time in culture, 4 of 14 TIL cultures eventually expressed highly specific cytolytic activity against fresh autologous melanoma targets in short term chromium release assays, failing to lyse multiple allogeneic tumors or autologous normal cells. These highly specific TIL were identified as CTL by phenotype (CD3+/CD4-/CD8+/Leu7-) and by function (lysis inhibited by antibodies directed against CD3 and MHC class I molecules). Cell separation experiments using immunomagnetic beads identified a highly tumor-specific CTL subpopulation within a nonspecific TIL culture, suggesting that the lytic activity of tumor-specific CTL may be diluted by the nonspecific killer activity present in heterogeneous TIL cultures. These studies provide evidence for specific MHC-restricted human immune responses against autologous tumor in cancer-bearing patients, and may be of importance to ongoing clinical trials using TIL in the immunotherapy of advanced malignancies.  相似文献   

8.
Tumor-infiltrating lymphocytes (TIL) were obtained from human ovarian tumors, expanded in the presence of IL-2 in culture and studied for cytotoxicity against fresh autologous and allogeneic ovarian carcinoma (CA) targets. TIL from ovarian tumors grew well in long term cultures, achieving from 8- to 682-fold expansion. TIL cultured with IL-2 were cytotoxic against both autologous and allogeneic fresh ovarian CA targets, and no specificity for autologous tumor could be demonstrated in any of the cultures. In all fresh TIL preparations, CD3+ lymphocytes were the major cell type and contained a high proportion (up to 51%) of activated (IL-2R+) cells as determined by two-color flow cytometry. Sorting of bulk TIL cultures followed by cytotoxicity assays identified the Leu-19+ cells, both CD3+ and CD3-, as effectors of cytotoxicity against autologous and allogeneic tumor cell targets. Cold target inhibition assays showed that allogeneic targets (both ovarian CA and a sarcoma) competed effectively with autologous ovarian CA targets for Leu-19+ effectors in TIL cultures. mAb to Leu-19 or Leu-2a did not block lysis of autologous targets by sorted effectors. OKT3 antibody augmented lysis of autologous targets by CD3+Leu-19- effectors only. These results show that non-MHC-restricted Leu-19+ effectors in cultures of TIL with 1000 U/ml of rIL-2 mediate lysis of autologous and allogeneic tumor cells. The CD3+Leu-19- cells, the main population in these cultures, do not mediate tumor lysis. To determine the phenotype of antitumor effectors in IL-2 cultures of TIL, cell sorting followed by functional assays are necessary.  相似文献   

9.
10.
CTL clones isolated from PBL or from tumor-infiltrating lymphocytes (TIL) of a melanoma patient (pt665) were screened for specificity on a panel including autologous tumor cells from two distinct metastases (Me665/1, Me665/2), autologous EBV-transformed B cells and 15 allogeneic cell lines of different histology. Each clone displayed a peculiar cytolytic activity ranging from lysis of most targets (PBL clone 4C4) to preferential reactivity on the two autologous metastases (TIL clone 8B3). Blocking and modulation experiments, revealed that the lysis of autologous-Tu cells by TIL clone 8B3, but not by PBL clone 4C4, could be inhibited by mAb to HLA-class I and to CD3 Ag or by CD3 complex modulation. Clone 8B3 was tested also on a panel of 25 tumor clones from Me665/2, revealing that only 4 neoplastic clones were lysed (2/4, 2/14, 2/17, and 2/51). Cold target competition experiments indicated that the uncloned autologous melanomas and one tumor clone (2/17), but no two other tumor clones (2/10, 2/15), could compete with one another for lysis by 8B3. Determination of melanin content of tumor clones from Me665/2 revealed that the four neoplastic clones recognized by 8B3 possessed much lower melanin levels than all the other 20 clones not lysed by this effector.  相似文献   

11.
We have developed culture conditions for the efficient expansion of cytotoxic effector cells from peripheral blood mononuclear cells (PBMC) by the timed addition of cytokine-rich supernatants collected from allogeneic PBMC cultures stimulated with anti-CD3 monoclonal antibody (mAb) (allogeneic CD3 supernatants; ACD3S). These cytotoxic effectors belonged primarily to CD56(+) natural killer (NK) cells, and the cell subset with the greatest cytotoxic activity was an otherwise rare population of CD3(+)CD56(+) cells (NKT cells) that expand dramatically under these conditions. CD3(+)CD56(+) cytotoxic effectors were generated from the PBMC of 16 patients with several types of cancer. The CD3(+)CD56(+) cell subset expanded significantly and efficiently lysed NK- as well as lymphokine-activated killer (LAK)-sensitive targets. More importantly, ACD3S-activated CD3(+)CD56(+) cells were capable of efficiently lysing autologous tumor cells including metastatic colorectal, ovarian, breast, lung and pancreatic tumor cells as well as melanoma cells. ACD3S-expanded CD3(+)CD56(+) cells exhibited increased levels of cytoplasmic interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-alpha), gamma-interferon (IFN-gamma) and perforin. CD3(+)CD56(+) cell-mediated cytotoxicity was not restricted by major histocompatibility complex (MHC) gene products, since it was not blocked by anti-MHC class I mAb but was highly inhibited in the presence of CD2- and CD18-specific mAb. These data suggest that CD3(+)CD56(+) cells expanded under the presence of ACD3S may be utilized in clinical protocols for cancer immunotherapy.  相似文献   

12.
This study focuses on the specific CD4+ T cell requirement for optimal induction of cytotoxicity against MHC class II negative autologous tumors (AuTu) collected from patients with various types of cancer at advanced stages. CD4+ T cells were induced in cultures of cancer patients' malignant effusion-associated mononuclear cells with irradiated AuTu (mixed lymphocyte tumor cultures (MLTC)) in the presence of recombinant IL-2 and recombinant IL-7. Tumor-specific CD4+ T cells did not directly recognize the AuTu cells, but there was an MHC class II-restricted cross-priming by autologous dendritic cells (DCs), used as APC. CD8+ CTL, also induced during the MLTC, lysed specifically AuTu cells or DCs pulsed with AuTu peptide extracts (acid wash extracts (AWE)) in an MHC class I-restricted manner. Removal of CD4+ T cells or DCs from the MLTC drastically reduced the CD8+ CTL-mediated cytotoxic response against the AuTu. AWE-pulsed DCs preincubated with autologous CD4+ T cells were able, in the absence of CD4+ T cells, to stimulate CD8+ T cells to lyse autologous tumor targets. Such activated CD8+ T cells produced IL-2, IFN-gamma, TNF-alpha, and GM-CSF. The process of the activation of AWE-pulsed DCs by CD4+ T cells could be inhibited with anti-CD40 ligand mAb. Moreover, the role of CD4+ T cells in activating AWE-pulsed DCs was undertaken by anti-CD40 mAb. Our data demonstrate for the first time in patients with metastatic cancer the essential role of CD4+ Th cell-activated DCs for optimal CD8+ T cell-mediated killing of autologous tumors and provide the basis for the design of novel protocols in cellular adoptive immunotherapy of cancer, utilizing synthetic peptides capable of inducing T cell help in vivo.  相似文献   

13.
Tumor-infiltrating lymphocytes (TIL) were obtained from a mouse melanoma cell line (CL 62) transfected with the gene for the human melanoma Ag p97. TIL were cultured with anti-CD3 antibody and IL-2 for up to 38 days. Flow cytometry identified these TIL as Thy-1.2 + ve/CD4-ve/CD8 + ve cells. A heteroconjugated antibody 500A2 x 96.5, specific for both the CD3 Ag on TIL and the p97 Ag on CL 62 melanoma cells, was prepared using N-succinimidyl-3-(2-pyridyldithio)-propionate as a linking agent. TIL alone demonstrated low levels of cytotoxicity against autologous CL 62 tumor and also against the parental K1735 tumor and an allogeneic murine melanoma (B16). The addition of 500A2 x 96.5 heteroconjugated antibody enhanced TIL-mediated lysis of CL 62 tumor, but not of the K1735 or B16 tumors. This enhanced cytotoxicity was elicited at E:T ratios as low as 0.4:1, and in TIL cultured for 7 to 38 days. These results suggest that hetero-conjugated antibody may enhance the anti-tumor effect of TIL in vivo.  相似文献   

14.
Tumor infiltrating lymphocytes (TIL) can be isolated from solid tumors and selectively expanded in long term culture with IL-2 and autologous irradiated tumor. Such long term cultured cells express anti-tumor activity in vitro, mediate the regression of established tumor in murine models of cancer, and have been used for the treatment of cancer in humans. We have characterized freshly isolated mouse Thy-1+ TIL populations, as well as long term TIL cultures, from several different C57BL/6 (B6) tumors. Freshly isolated Thy-1+ TIL include both CD4+ and CD8+ cells, as well as cells bearing NK markers. These cells are predominantly TCR alpha beta+, with a smaller population of TCR gamma delta+ cells. The TCR alpha beta+ cells expressed a broad distribution of V beta phenotypes that was statistically different from that expressed in normal B6 splenic Thy-1+ cells or CD8+ cells, presumably reflecting in vivo selection in the host anti-tumor response. NK cells are present in these tumors at a greater frequency than noted in splenic T cells. Cultured TIL populations rapidly became exclusively Thy-1+/CD8+/CD4- and TCR alpha beta+/gamma delta-. Individual long term TIL populations initially expressed multiple V beta products, but rapidly restricted their V beta expression, frequently expressing a single dominant V beta. The identity of this dominant V beta varied among different TIL lines, but the overall representation of V beta phenotypes in these cultures was statistically different from that seen in Thy-1+ or CD8+ splenocytes. No statistical difference was noted between lines derived from antigenically distinct tumors. The selection of tumor specific T cells in vitro is therefore not reflected in any simple predominance of V beta usage. The complexity of TCR usage in the anti-tumor response may result from the involvement of multiple alpha- and beta-chain regions in the response to a single antigenic determinant, or may reflect multiple antigenic determinants expressed on a single syngeneic tumor.  相似文献   

15.
Adoptive immunotherapy with immune effector cells has proved to be potent for treatment of tumors, however neither the attendant criteria for potential clinical efficacy of the injected cells, nor the method to prepare these cells are presently well established. Our procedure of collecting lymphocytes from biological samples, was based on the use of low IL-2 concentrations (90 to 150 IU/ml) and on the stringent separation of lymphocytes from tumor cells at the very early stages of their outgrowth in culture. When lymphocytes were derived from tumor biopsies (TIL), we observed differences depending on the histological type of tumor. In renal cell carcinoma, natural killer cells were expanded in 4/11 biopsies contrary to what was observed in breast cancer (92 +/- 5% of T lymphocytes from 9 biopsies). The outgrowth of lymphocytes from breast tumors was slower and lower than from renal carcinomas. The autologous tumor cell line was more difficult to obtain from breast carcinoma (23%) than from renal cell carcinoma (61%) biopsies. For ovarian cancer, short-term culture of tumor cells could be obtained for half of the tumor-invaded biological samples. Eight of the 23 tumor-derived cultures contained more than 40% CD8 T. TIL were consistently cytolytic each time they could be evaluated. For ascitic and pleural fluids, data were of similar range. In ascitic-derived cultures, tumor cells and antigen-presenting cells are present and can be supposed to rechallenge T cells with tumor antigens. Lymphocytes derived from lymph nodes could be expanded to a larger number than TIL. However, only 1/18 of these cultures contained more than 40% CD8 T. The presence of few tumor cells in this culture was in favor of significant specific and non-specific cytotoxicity in RCC lymph node cultures and higher percentages of CD8 T in breast cancer lymph nodes. Correlations could not be established between CD8 T percentages and specific in vitro cytotoxicity in our polyclonal populations. Our conclusion is that phenotypic and functional quality of lymphocytes is of interest when the T cells are derived 1) from tumors (RCC, breast or ovarian cancer) and isolated very early to avoid inhibitor factors secreted from tumor cells or 2) from lymph nodes and ascitic and pleural fluids when very few tumor cells are co-cultivated with lymphocytes at initial steps of culture. Final expansion to a number of lymphocytes suitable for therapy (> 109) could be attained in a second step of the procedure by the use of 1,000 IU/ml IL-2 each time it was assayed with 50.106 lymphocytes. In view of these data it appears that phenotypic and functional changes occur during culture depending on the presence of a particular ratio of tumor antigens. This could be artificially reproduced.  相似文献   

16.
Melan-A/MART1 is a melanocytic differentiation antigen recognized on melanoma tumor cells by CD8+ and CD4+ T cells. In this study, we describe a new epitope of this protein recognized in the context of HLA-Cw*0701 molecules by a CD8+ tumor infiltrating lymphocyte (TIL) clone. This CD8+ TIL clone specifically recognized and killed a fraction of melanoma cells lines expressing Melan-A/MART1 and HLA-Cw*0701. We further show that the Melan-A/MART151–61 peptide is the optimal peptide recognized by this clone. Together, these data significantly enlarge the fraction of melanoma patients susceptible to benefit from a Melan-A/MART1 vaccine approach.  相似文献   

17.
Combined CD3 and CD28 monoclonal antibodies (mAb) may initiate efficient activation and expansion of tumor-infiltrating lymphocytes (TIL). In this study we compared phenotypical and functional characteristics of TIL from a group of 17 solid human tumors, stimulated either by high-dose recombinant interleukin 2 (rIL-2, 1000 IU/ml) or by a combination of anti-CD3 and anti-CD28 monoclonal antibodies in the presence of low-dose rIL-2 (10 IU/ml). Compared to activation with high-dose rIL-2, stimulation of TIL with CD3/CD28 mAb induced significantly stronger proliferation and yielded higher levels of cell recovery on day 14. Following the CD3/CD28 protocol, expansion of an almost pure population of CD3+ cells was obtained. Whereas CD4+ cells dominated in the first week of culturing, within 4 weeks the CD8+ population increased to over 90%. The specific capacity to kill autologous tumor cells was not increased as compared to the high-dose rIL-2 protocol, but all cultures showed high cytotoxic T cell activity as measured in a CD3-mAb-mediated redirected kill assay. These studies show that combined CD3 and CD28 mAb are superior to rIL-2 with respect to the initiation of expansion of CD8+ cytolytic TIL from solid tumors. Stimulation with specific tumor antigens at a later stage of culturing may further augment the expansion of tumor-specific cytolytic T cells.  相似文献   

18.
CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.  相似文献   

19.
While there are many obstacles to immune destruction of autologous tumors, there is mounting evidence that tumor antigen recognition does occur. Unfortunately, immune recognition rarely controls clinically significant tumors. Even the most effective immune response will fail if tumors fail to express target antigens. Importantly, reduced tumor antigen expression often results from changes in gene regulation rather than irrevocable loss of genetic information. Such perturbations are often reversible by specific compounds or biological mediators, prompting a search for agents with improved antigen-enhancing properties. Some recent findings have suggested that certain conventional chemotherapeutic agents may have beneficial properties for cancer treatment beyond their direct cytotoxicities against tumor cells. Accordingly, we screened an important subset of these agents, topoisomerase inhibitors, for their effects on antigen levels in tumor cells. Our analyses demonstrate upregulation of antigen expression in a variety of melanoma cell lines and gliomas in response to nanomolar levels of certain specific topoisomerase inhibitors. To demonstrate the ability of CD8+ T cells to recognize tumors, we assayed cytokine secretion in T cells transfected with T cell receptors directed against Melan-A/MART-1 antigen. Three days of daunorubicin treatment resulted in enhanced antigen expression by tumor cells, in turn inducing co-cultured antigen-specific T cells to secrete Interleukin-2 and Interferon-γ. These results demonstrate that specific topoisomerase inhibitors can augment melanoma antigen production, suggesting that a combination of chemotherapy and immunotherapy may be of potential value in the treatment of otherwise insensitive cancers.  相似文献   

20.
The therapeutic potential of adoptive therapy using tumour-infiltrating lymphocytes (TIL) has been demonstrated in a number of clinical trials. However, freshly isolated tumour-infiltrating lymphocytes (TIL) are often impaired in their proliferative and cytotoxic responses, which limits their use in immunotherapy. Several hypotheses with regard to the poor effector function of TIL have been postulated, including the production of immunosuppressive factors by tumour cells. In a previous paper we reported the efficient expansion of immunoreactive TIL from a variety of solid tumours by stimulation with a combination of monoclonal antibodies (mAbs) against CD3 and CD28. In the present study we analysed whether this protocol would be improved by the removal of tumour cells at the start of the culture. We tested a highly immunogenic tumour, melanoma, and a poorly immunogenic tumour, colon carcinoma. Removal of tumour cells highly improved anti-CD3/CD28 stimulated expansion of TIL from colon carcinoma, resulting in a significantly higher percentage of potentially tumour-specific CD8-positive T-cells and a reduced CD4/CD8 ratio compared to expansion in the presence of tumour cells. In contrast, expansion and CD4/CD8 ratio of melanoma-derived TIL was not significantly influenced by the removal of autologous tumour cells. CD3/CD28-stimulated melanoma TIL cultured in the absence of tumour cells showed specific lysis of autologous tumour cells comparable to melanoma TIL cultured in high-dose IL2. However, no cytotoxicity could be detected in colon TIL irrespective of the culture conditions used. On the other hand, 3/8 colon carcinoma TIL cultures and 9/12 melanoma-derived TIL cultures showed IFN secretion upon stimulation with autologous tumour cells. We conclude that stimulation of TIL with a combination of mAbs to CD3 and CD28 in the absence of tumour cells induces efficient expansion of potentially tumour-specific cells from a highly and a poorly immunogenic tumour. Removal of tumour cells does not have a negative influence on the generation of tumour-specific T cells, while cell yield improves. Therefore, for large-scale cultures this protocol can efficiently induce the outgrowth of tumour-specific TIL, at the same time providing a useful source of autologous tumour cells that can be stored and used to direct or test antitumour specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号